SciELO - Scientific Electronic Library Online

 
vol.123 número2Online spiral grade controlA geometallurgical approach to enhance the gravity beneficiation of a strontium deposit índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

MCQUILLAN, A.  y  BAR, N.. The necessity of 3D analysis for open-pit rock slope stability studies: Theory and practice. J. S. Afr. Inst. Min. Metall. [online]. 2023, vol.123, n.2, pp.63-70. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2425/2023.

Geotechnical models developed during the planning stages of open pit mines are three-dimensional so as to capture the spatial variation in lithological, structural, hydrogeological, and geomechanical conditions. Geological models that describe the lithological and structural (faulting and folding) characteristics of a deposit are always 3D. Likewise, boreholes and piezometers used to develop geomechanical properties and groundwater models are drilled at spatial offsets across the deposit to understand the lateral and vertical characteristics. Yet when geotechnical analysis is completed, often the three-dimensional geological, hydrogeological, and structural models as well as geometrically complex 3D mine designs for optimizing economic mineral recovery and overburden removal are simplified to two-dimensional sections. In this paper we demonstrate that this simplification can lead to the wrong failure mechanism being identified, analysed, and/or a conservative factor of safety being calculated and hence an over-estimation of slope stability. Through case studies we show how three-dimensional analysis methods are more suited to rock slopes, particularly those with anisotropic material strength, when singularities such as geological faults are present, and nonlinear slope geometry. When the same slopes are analysed in two dimensions, the failure mechanism calculated is often fundamentally incorrect. The case studies further reveal that the factor of safety calculated in three dimensions is not always higher than the two-dimensional factor of safety.

Palabras clave : slope stability; 3D; limit equilibrium; finite element; open pit; rock mechanic.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons