SciELO - Scientific Electronic Library Online

 
vol.120 número12 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

    Links relacionados

    • Em processo de indexaçãoCitado por Google
    • Em processo de indexaçãoSimilares em Google

    Compartilhar


    Journal of the Southern African Institute of Mining and Metallurgy

    versão On-line ISSN 2411-9717versão impressa ISSN 2225-6253

    Resumo

    GUAN, C-J  e  YOU, W.. A nonlinear prediction model, incorporating mass transfer theory and expert rules, for refining low-carbon ferrochrome. J. S. Afr. Inst. Min. Metall. [online]. 2020, vol.120, n.12, pp.671-680. ISSN 2411-9717.  https://doi.org/10.17159/2411-9717/1119/2020.

    We present an optimal oxygen-blowing system with expert rules to improve the efficiency of refining low-carbon ferrochrome. A nonlinear model based on mass transfer theory, the principles of heat transfer, and the principles of high-temperature chemical reactions for refining low-carbon ferrochrome are established. The model is mainly used to control the oxygen supply rate during argon-oxygen top-bottom double-blown refining, thereby controlling the refining temperature and reducing the carbon content. Twenty production tests using a 5 t argon-oxygen refining furnace demonstrate the effectiveness of the system and reliability of the nonlinear model. A comparison of the model data with the experimental data shows that although the model fails to predict the silicon content in the final refined product, it can predict the contents of the main components at the refining end-point and the refining temperature accurately.

    Palavras-chave : prediction model; end-point control; mass transfer theory; expert rules.

            · texto em Inglês     · Inglês ( pdf )