SciELO - Scientific Electronic Library Online

 
vol.116 número5Plan compliance process for underground coal mines índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

    Links relacionados

    • Em processo de indexaçãoCitado por Google
    • Em processo de indexaçãoSimilares em Google

    Compartilhar


    Journal of the Southern African Institute of Mining and Metallurgy

    versão On-line ISSN 2411-9717versão impressa ISSN 2225-6253

    Resumo

    HOSSEINI, S.A.  e  ASGHARI, O.. Multivariate geostatistical simulation of the Gole Gohar iron ore deposit, Iran. J. S. Afr. Inst. Min. Metall. [online]. 2016, vol.116, n.5, pp.423-430. ISSN 2411-9717.  https://doi.org/10.17159/2411-9717/2016/v116n5a8.

    The quantification of mineral resources and evaluation of process performance in mining operations at Gole Gohar iron ore deposit requires a precise model of the spatial variability of three variables (Fe, P, and S) which must be determined. According to statistical analysis there are complex multivariate relationships between these variables such as stoichiometric constraints, nonlinearity, and heteroskedasticity. Due to the impact of these complexities in decision-making, they should be reproduced in geostatistical models. First of all, in order to maintain the compositional and stoichiometric constraints, additive log-ratio (alr) transformation has been applied. In the next step cosimulation, using stepwise conditional transformation (SCT) and sequential Gaussian simulation (SGS) has been used to simulate multivariate data. Through statistical and geostatistical validations it is shown that the algorithms were able to reproduce complex relationships between variables, both locally and globally.

    Palavras-chave : additive log-ratios; stepwise conditional transformation; multivariate simulation; iron ore deposit; complex relationship.

            · texto em Inglês     · Inglês ( pdf )