
The key steps in mining projects are the
quantification of mineral resources, definition
of mining reserves, and production scheduling.
They rely on the construction of a block model
that is used to represent basically the spatial
distribution of ore grades (Montoya et al.,
2012). The determination of grades and
tonnages affects risk assessment and economic
evaluation of mining projects. Evaluation of
process performance in mining operations
requires geostatistical modelling of many
related variables (Barnett and Deutsch, 2012).
Iron ore quality is characterized by multiple
variables: not only the iron grade but also the
contaminants that interfere in the subsequent
steel manufacturing processes. Consequently,
the spatial variability of multiple variables
must be determined. Key variables are
frequently correlated, and such correlations
must be honoured during estimation and
simulation. Data from iron ore deposits
constitutes compositional data; furthermore,
relationships the between assay data are often
heteroskedastic.

In order to capture spatial variability and to
assess spatial uncertainty, conditional
simulation is becoming increasingly popular in
the geosciences and the minerals industry for
quantifying, classifying, and reporting mineral
resources and ore reserves (Journel, 1974;
Snowden, 2001). Mineral deposits like iron ore
contain several elements of interest with
statistical and spatial dependences that
require the use of joint geostatistical
simulation techniques in order to generate
models preserving their spatial relationships.
Multivariate modelling can improve the design
and planning with respect to traditional
models. Additionally, it can help in the
assessment of the impact of grade uncertainty
on production scheduling (Montoya et al.,
2012). 

Cosimulation approaches include methods
based on the linear model of co-regional-
ization, or LMC (Goovaerts, 1997) that can
account for the linear (or close to linear)
correlations between variables, as the
relationship and dimensionality of the data to
be modelled may render co-simulation
frameworks impractical. Relationships between
variables often show complex features such as
nonlinearity, heteroskedasticity, and other
constraints (Leuangthong and Deutsch, 2003). 

One approach is to apply a transformation
to the data that removes the relationships,
allowing the transformed variables to be
simulated independently. Then the variable-
variable relationships are restored by back-
transformation of the simulated variables. A
number of transformation techniques are
available that remove these complex features
and produce well-behaved distributions that
approach Gaussianity. It is highly desirable
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that the input data to the simulation are standard Gaussian
for SGS. There are additional transformations for the de-
correlation of variables, allowing independent simulation to
proceed without the need for LMC (Barnett and Deutsch,
2012), e.g.  principal component analysis (PCA)(Goovaerts,
1993; Hotelling, 1933) and minimum/maximum autocorre-
lation factors (MAF)(Desbarats and Dimitrakopoulos, 2000;
Switzer and Green, 1984), UWEDGE transform (Mueller and
Ferreira, 2012), the stepwise conditional transformation
(SCT) (Leuangthong and Deutsch, 2003; Rosenblatt 1952)
and the projection pursuit multivariate transform (PPMT)
(Barnett, Manchuk, and Deutsch, 2014). A shared limitation
for linear methods such as PCA and MAF transforms is the
poor handling of nonlinear and heteroskedastic features
(Barnett et al., 2013). One of the disadvantage of stepwise
conditional transformation is that in order to classify data
and transform each class, there must be sufficient data to
identify a conditional distribution (Leuangthong and
Deutsch, 2003). As each technique possesses its own
limitations, challenges may arise in choosing the appropriate
transforms and the order in which they are applied. Barnett
and Deutsch (2012) have proposed a workflow in which
transformations are given for the removal of each complexity.
No single technique addresses all of the complexities that
may exist between the variables of a mineral deposit.
Transformations will often be used in chains (Barnett and
Deutsch, 2012). In this paper log-ratios (Aitchison, 1982;
Pawlowsky-Glahn and Olea, 2004) and STC are used to
overcome problems of compositional data and remove the
complex features, following the work of Barnett and Deutsch
(2012). 

The SCT approach has been applied to the modelling of
ore deposits such as multivariate simulation of the Red Dog
mine (Leuangthong et al., 2006), simulation of total and
oxide copper grades in the Sungun copper deposit (Hosseini
and Asghari, 2014), and simulation of correlated variables in
Yandi Channel iron deposit (De-Vitry, 2010). De-Vitry (2010)
recommended that SCT be attempted where significantly
nonlinear correlations are present. Log-ratios have also been
used to simulate a nickel laterite data-set (Barnett and
Deutsch, 2012) and estimate grades in iron ore deposits in
Brazil (Boezio et al., 2011). Conditional Gaussian
simulations were applied to transformed variables. Back-
transformations are executed in the reverse order of which
they were applied going forward.

The methodology in the present study is the combination of
additive log-ratios (alr) and stepwise conditional transfor-
mations proposed by Barnett and Deutsch (2012). Figure 1
shows the proposed order in which multivariate complexities
should be addressed to form an uncorrelated multivariate
Gaussian distribution. Additive log-ratios (Aitchison, 1982)
are used to preserve compositional constraints, and must be
applied as the first forward transformation. Then stepwise
conditional transformation is used to correct for too-skewed
distributions that arise after applying log-ratios and remove
the complex features. The major motivation to use SCT in
practice is that it is robust when dealing with complex
multivariate distributions (Rossi and Deutsch, 2014).
Although minimum/maximum autocorrelation factors (MAF)

were used to remove correlations between variable elements
before simulation, the MAF approach performs poorly with
variables that do not demonstrate a linear correlation
(Rondon and Tran, 2008; De-Vitry 2010). Butcher and
Dimitrakopoulos (2012) have also applied the MAF method
for multivariate simulation of the Yandi iron ore deposit, for
which the reproduction of the coefficient of correlation
between the variables was weak. This contrasts with the STC
approach, which is better equipped for handling problematic
correlations such nonlinearity and heteroskedasticity. Then
sequential Gaussian simulation (SGS), which is efficient and
widely used (Lantuejoul, 2002), was performed to simulate
transformed variables. Back-transformations are executed in
the reverse order to which they were applied going forward.

The additive log-ratios transform is used to deal with this
constant-sum constraint. The logarithmic transformation
must be applied with care when there are zeros for head
grade variables. Zeros are obviously problematic, because the
logarithm of zero is undefined. The alr transform for D-part
composition (Aitchison 1999) is 

[1]

where xi is the new variable and Zi represents each of the
original variables. The back-transformation is

[2]

where xi is logarithmic transformed variable. Directly kriging
this log-ratio-transformed data, with a direct back-transform
applied results in estimates that are biased. The alternative to
direct kriging of log-ratios is to apply a nonlinear approach,
in which the conditional distributions of the components are
modelled instead of unique values from linear kriging. It has
been shown that conditional simulation, where the log-ratio
values are transformed into Gaussian values, are valid
techniques for dealing with compositional data (Job, 2012).
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The STC technique is proposed to transform multiple
variables with complex relationships into univariate and
multivariate Gaussian with no cross-correlation
(Leuangthong and Deutsch, 2003). This method removes all
correlations between variables before simulation; thus makes
modelling of experimental variograms and simulation faster
than conventional cosimulation because cross-variograms
and cokriging are not required. The main limitation of the
stepwise conditional transformation lies in the need for
sufficient data, and this transformation is suitable for low
dimensional data-sets (2–4 variables). This transform is
identical to the normal score transform for the  first variable.
For multiple variables, the normal score transformation of the
next variable is conditional to the probability class of the
preceding variables in the following form:

[3]

where Yi, i=1,…, n are multivariate Gaussian variables that
are independent at lag distance of zero and  are the new
variables to be modelled. The transformation ordering for the
stepwise conditional transform will affect the reproduction of
the variogram from simulation. Thus, the most important
variable or the most continuous variable should be chosen as
the primary variable. The back-transformation enforces
reproduction of the original complex features. 

The Gole Gohar iron ore deposit is located at about 55 km
southwest of Sirjan in the eastern edge of the Sanandaj-
Sirjan structural zone of Iran. The Gole Gohar deposit,
comprising six main anomalies and a total reserve of 1300
Mt of high-grade iron ore, is one of the most important
economic mineral deposits in Iran. The host rocks include

metamorphosed sedimentary and volcanic rocks of the
greenschist facies, probably of Upper Proterozoic-Lower
Paleozoic age. The mineralization comprises macro-, meso-,
and microbanding of magnetite associated with shale,
sandstone, and cherty carbonates. The presence of
diamictites and phenoclasts in magnetite banding and the
host rocks indicates an iron ore association similar to the
Rapitan banded iron ore (Babaki and Aftabi, 2006). The Gole
Gogar deposit contains 57.2% iron, 0.16% phosphorus, and
1.86% sulphur.

Gol-Gohar iron ore mine anomaly no. 4 is considered in this
study. The host rocks are mainly metamorphic rocks,
including amphibolite, mica schist, and chlorite schist.
Mineralization occurs in both sulphide and oxide forms, and
consists of pyrite, pyrhotite, and chalcopyrite as the sulphide
minerals, accompanied by other oxide–hydroxide minerals of
iron including magnetite, haematite, and limonite. A set of
exploration drill-holes is available with an average sampling
mesh of 50 m × 50 m. Sample data was composited to 3 m
composites and extracted for geostatistical analysis and
variography. The assay database comprises 3078 sample
intervals from 187 boreholes assayed for iron, phosphorus,
and sulphur. A 3D map of drill-hole locations is shown in
Figure 2. The basic statistics for these variables are given in
Table I. The block model constructed is sufficiently reliable to
support mine planning and allow evaluation of the economic
viability of a mining project.

At Gole Gohar Fe%, P%, and S% are variable of interest. The
head grades are considered compositional; that is, they are
non-negative and sum to 100%. Not all elements in a sample
are assayed, therefore the sum of the head grades is less than
100%. In geostatistical modelling, if this constraint is not
explicitly imposed it can be violated. A logarithmic transform
of four head grade variables is considered, with the fourth
variable imposing the 100% constant sum:

[4]

There are few zeros due to the pervasive mineralization
to varying extent over the entire deposit. These values have
been replaced by the analytical detection limit. The alr
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transform is used to deal with this constant sum constraint.
Zfiller has been used as denominator in Equation [1]. There
are now three logarithmic transformed variables, and STC is
applied to transform them into Gaussian distributions and
remove all correlations between them. For Gole Gohar, Fe is
the most important variable, and so the others will be
conditioned to it. Due to the spatial continuity, P and S are
considered as the second and third variables respectively.
Marginal histograms on the bivariate scatter plots of
variables after transformations are displayed in Figure 3. The
bivariate distributions again exhibit a bivariate Gaussian
distribution with essentially zero correlation. Thus, Gaussian
simulation techniques can be applied with no requirement for
cokriging or to fit a model of co-regionalization. 

Geostatistical simulations generate a set of images, or
‘realizations’, as opposed to estimates, which output a single
image. The realizations constitute a range of spatial images
that are consistent with the known statistical moments
(variogram and histogram) of the declustered input data, and
in the case of conditional simulations, the data itself.
Geostatistical simulations can be used to assess uncertainty
over various scales or volumes (e.g. mining production
intervals), and can assist in evaluating drill-hole spacing,
mining selectivity and blending, and mine financial modelling
(Chiles, 2012). In this study, sequential Gaussian simulation

or SGS (Isaaks, 1990) has been performed for constructing
the realizations. The conditioning samples are migrated to the
closest grid node, and a random path is defined through all
the grid nodes. Simple kriging is used to construct the
conditional Gaussian distribution at each node in the path
using the conditioning and previously simulated data. A
simulated value is drawn from this conditional distribution
and added to the grid node. The next node on the random
path is then simulated until all nodes are completed. This
process is then repeated to generate n realizations. Each
realization contains simulated Fe, P, and S value. 

Directional experimental semivariograms were produced
for iron, phosphorus, and sulphur after transformations.
Experimental and model semivariograms of the transformed
variables are shown in Figure 4 and cross-variograms
between three transformed variable are shown in Figure 5.
The cross-semivariogram takes low values (almost zero).
Accordingly, separate modelling of the direct variogram of
these variables is undertaken. The total ranges modelled are
also utilized to help define the optimum search parameter and
search ellipse radii used in the simulation. Applying the two-
thirds rule to the total of the variogram range in the search
ellipse radius forces the interpolation to use a sample where
covariance between samples exists. One joint simulation 
for the three elements conditional to the drill-hole data
(Figure 1) is shown in Figure 6.
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Table I

Fe(%) 3078 8.7 67.6 59.6 57.08 7.882
P(%) 3078 0.01 0.79 0.103 0.118 0.101
S(%) 3078 0.001 7.101 1.4 1.7 1.671
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To validate the results, four steps are considered:

1.  Quantile-to-quantile (Q–Q) plots between drill-hole
data and simulated values 

2.  Comparison of drill-hole data and simulation value
scatter-plots 

3.  Comparison of histograms of the sum of three
modelled components with the original assays, and
simulated values 

4.  Assessment of the vertical profiles of the realizations
at block support level.

Figure 7 shows that the simulated results reproduce the
distributions of the drill-hole data properly. A histogram
correction was applied following all back-transformation
steps. As a comparison, the point-scale scatter-plots between
selected elements for the data, the first simulation without
using transformations, and the first simulation using
transformations are shown in Figure 8. When the transfor-
mations are applied, the shape of the point cloud remains
substantially the same, and reproduction of the coefficient of
correlation between variables is good. Figure 9 displays
histograms of the sum of the three components for the
experimental assays and simulated values under three
different conditions: (1) without the application of alr or SCT,
(2) with the application of SCT, (3) with both alr and SCT. It
is observed from the descriptive statistics, especially the
maximum value, that the simulated locations with the use of

additive log-ratios preserved the compositional constraint
explicitly. The simulated locations without the use of alr do
not explicitly honour the compositional constraint. Although

�

428 VOLUME 116     



this issue is demonstrated with only three modelled
variables, the results would be much more dramatic when
considering the additional components that the mining model
would require (Barnett and Deutsch, 2012). In Figure 10, the
variation of three elements in the vertical direction is
compared. The vertical trends of the elements are an
important feature of iron ore deposits (Boucher and
Dimitrakopoulos, 2012). The general shape of the profiles
is well reproduced in all cases but in elevations 1430 to 
1530 m, east of the deposit, there are differences between
vertical profile of variables in drill-hole data and the
simulation results. These differences are due to the paucity of
data.

The quantification of mineral resources and evaluation of
process performance at the Gole Gohar iron ore deposit
requires consideration of three correlated variables (Fe, P,
and S). Relationships between these variables show complex
features. This paper has shown the practical aspects of an
efficient framework for the joint simulation of correlated
variables based on a combination of log-ratios and stepwise
conditional transformation (proposed by Barnett and
Deutsch), and directly generating point-scale realizations.
Additive log-ratios were used to honour the compositional
constraint, then stepwise conditional transformation was
used to correct for the too-skewed distributions that log-
ratios create and remove the complex features. The use of
this procedure did not require fitting of a LMC for joint
simulation of variables. This procedure reproduced the

Multivariate geostatistical simulation of the Gole Gohar iron ore deposit, Iran

VOLUME 116                                       429 �



Multivariate geostatistical simulation of the Gole Gohar iron ore deposit, Iran

relationships between the variables and histograms of
variables well. The realizations are an input for the
estimation of mineral resources and ore reserves, and are
suitable for mine and plant optimization.
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