SciELO - Scientific Electronic Library Online

 
vol.110 issue1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    SAIEE Africa Research Journal

    On-line version ISSN 1991-1696Print version ISSN 0038-2221

    Abstract

    RAHMAN, Ashfaqur  and  VENAYAGAMOORTHY, Ganesh Kumar. Spatial Matrix Based Clustering of Sparse Electric Power Networks. SAIEE ARJ [online]. 2019, vol.110, n.1, pp.26-38. ISSN 1991-1696.

    Distributed computation is an effective policy to increase the speed of the sparse networked systems. In a sparse network, clustering methods like k-means does not work directly as it cannot explore the connectivity of the system. To solve the problem, two modification methods are proposed in the existing graph and a new graph named Spatial Matrix is introduced in this paper. The proposed modification is a fast process and the computation time can be considered negligible compared to the rest of the process. Thus it preserves the ultimate objective of the distribution. It works as a pre-conditioning that can be used with a wide range of clustering and mathematical tools. With distributed state estimation of IEEE 14, 68, and 118-bus systems with automatic clustering, the effectiveness of the spatial matrix is demonstrated.

    Keywords : Distributed computation; network clustering; sparse network; spatial matrix; WLS estimator.

            · text in English     · English ( pdf )