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Spatial Matrix Based Clustering of Sparse Electric Power Networks
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Abstract—Distributed computation is an effective policy to
increase the speed of the sparse networked systems. In a sparse
network, clustering methods like k-means does not work directly
as it cannot explore the connectivity of the system. To solve the
problem, two modification methods are proposed in the existing
graph and a new graph named Spatial Matrix is introduced in
this paper. The proposed modification is a fast process and the
computation time can be considered negligible compared to the
rest of the process. Thus it preserves the ultimate objective of
the distribution. It works as a pre-conditioning that can be used
with a wide range of clustering and mathematical tools. With
distributed state estimation of IEEE 14, 68, and 118-bus systems
with automatic clustering, the effectiveness of the spatial matrix
is demonstrated.

Index Terms—Distributed computation, network clustering,
sparse network, spatial matrix, WLS estimator.

I. INTRODUCTION

One of the major classes of practical systems is the sparse
network [1]. It appears in a large scale in social, computer,
biological, transportation, citation, and power systems net-
works [2]. In a sparse network, each node is connected with a
few other nodes, and none of them is connected with a large
number of nodes. However, the networks are usually vast in
nature, and most of their computations are time-consuming
[3].

A major way to make the process fast is to distribute the
whole system in clusters. Each cluster executes a local process
with its own nodes ignoring the effects of the others. Once
the processes are done, they exchange and update the results.
Based on the nature of the process, they may repeat the local
processes and exchange the results. Repeating these steps, they
try to converge to the optimal result provided by the non-
distributed/centralized method.

However, it is not an easy task to build the clusters that
keeps the connectivity of the network. Moreover, the accuracy
of the distributed method needs to meet a minimum threshold.
Though there are a good number of works on building the
clusters in different fields, most of them are time-consuming
that hampers the ultimate objective of clustering [4]. The
related works on graph clustering can be classified in two
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major groups, general applications, and specific applications.
A few of them are mentioned below.

a) General Applications: A complete survey on graph
clustering can be found in [5]. A general method is proposed
in [6] based on the minimum cut trees on the graph. A
discrete uncoupling process called Markov cluster process is
proposed for finite spaces in [7]. Two algorithms named k-
medoids and the Girvan-Newman method are compared in
[8]. To extract the common information shared in a cluster,
a method named weighted minimum common supergraph is
proposed in [9] that can separate the information from noise
and distortions. The idea of cliques is generalized in [10] as
distance-k cliques . The weighted kernel k-means and several
graph clustering objectives are combined to perform a semi-
supervised clustering of data in [11].

b) Specific Applications: An algorithm is proposed in
[12] to identify the dense clusters of co-cited references.
Another method is developed in [13] to determine the class
of the software systems. A method called Spatial Partition
Clustering (SPC) is compared with three other methods for
path query processing in [14]. In [15], the authors present in-
telligent clustering techniques for efficient prediction of sugar
production. A software named IND based clustering is used
for dense imaging network in [16]. Quantum clustering based
multi-valued quantum fuzzification decision tree is used to
detect the fault in analog circuit in [17]. The feature selection
is considered as a clustering process with data decomposition
technique in [18] and a novel feature selection method is
proposed based on the non-negation matrix factorization.

In this paper, a fast and simple modification is proposed to
effectively cluster the nodes based on their physical positions.
With the aid of k-means clustering, the proposed method
is demonstrated to perform faster for power system state
estimation in Section 4. k-means cannot be applied directly
on a network as it cannot incorporate the effects of the
edges/connectivity [19]. The proposed method is applicable for
both weighted and non-weighted graph. The effectiveness of
the proposed method is tested for the state estimation problem
of IEEE 14, 68 and 118-bus test system.

State estimation of power systems is a centralized process
based on Weighted Least Squares (WLS) method [20], [21].
WLS is the most efficient estimator for any process with
Gaussian noise. It includes matrix inversion or Cholesky
decomposition in each iteration that makes it time-consuming.
The computational complexity of matrix inversion is in the
order of n3 [22]. So, the size of the system plays an important
role in WLS estimation.

To reduce the size of the problem, distributed estimation
is being analyzed for a long time. Different works focus on
different aspects of the distribution. Some focus on the speed
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[23], [24], some on the local observability [25], some on
islanding [26], some on inter-area oscillation [27], some on
voltage stability monitoring [28] and some on robustness [29].
However, none of them have focused on automatic clustering
of the buses where the above mentioned constraints are easily
met. An operator may deal with thousands of buses and he
may need to distribute those regardless of the observability
and robustness.

The main contributions of the paper can be summarized as
follows,

• Two different methods are proposed to form a modified
graph named spatial matrix based on the physical loca-
tions of the nodes and the connection matrix. With the
help of the k-means, a complete clustering algorithm is
formed. Both methods convert the connectivities to a pair
of new nodes. Each new node holds the attribute of the
two nodes representing the connection.

– Method 1: It introduces the new nodes on the vertical
and horizontal locations of the existing nodes. It
creates some diversities in the placements of the
nodes corresponding to the connectivity.

– Method 2: It places the new nodes on the connecting
edge of two existing nodes. The new nodes are
placed close to the existing nodes. This is helpful
for preserving the observability of the clusters.

• The effects of the clustering algorithm are demonstrated
on two test power systems under different conditions. It
exhibits an effective way to parallelize the state estimation
process.

It is not mandatory to use physical locations of the nodes.
In fact, it is recommended that the relevant distances are used
for each application domain. For example, for electric power
grids, the electrical distances can also be considered. However,
except the power grid, the analysis for other application
domains is beyond the scope of this paper.

The rest of the paper is organized as follows. Section II
introduces the system model for centralized and distributed
WLS estimation. Two different methods are proposed to form
the spatial matrix and their working principles are analyzed in
Section III. The methods are applied on IEEE 14, 68, and 118-
bus systems and the formed clusters are studied in Section IV.
The simulation results are discussed in Section V. The paper
is concluded with future plans in Section VI.

II. SYSTEM MODEL

To monitor the current status of the power system, measure-
ments are collected from different parts of the system. They are
taken in the forms of power flows, power injections, voltage
magnitudes, and current magnitudes etc. which contain errors
of different levels. Let, z denotes an m×1 measurement vector
including error. The relation between z, the state vector x, and
the measurement error e can be written as,

z = h(x) + e (1)

Where, h(.) denotes the nonlinear function of the
measurements.
In state estimation, voltage magnitudes and angles are

considered as the state variables. They form the set with
minimum cardinality which can describe the whole system
[30]. The angle of the reference bus is considered as the
reference angle and all other angles are calculated with
respect to that. If there are N buses, the state vector x can
be represented as,

x = [θ2 θ3..θN V1 V2..VN ]T (2)

Here, θ and V , with proper subscripts, represent voltage angles
and magnitudes respectively. If the number of buses in the
system is N , there will be 2N − 1 state variables. In the
process of estimation, the number of measurements exceeds
the number of states to form an overdetermined system.

The accuracy is measured by the L2-norm of the residues
which are calculated as the difference between the original
measurements and the estimated measurements. Minimizing
the norm (also referred to as the fitness) is the objective of
the optimization problem,

min
x̂

||z− h(x̂)|| (3)

where, x̂ is the estimated state vector.

A. Weighted Least Squares Estimation

Like other nonlinear problems, WLS estimator linearizes the
system over a small range. Then it applies linear operations to
get an updated value. The system is linearized again based
on this updated value and uses the linear estimation. This
process is repeated unless the estimated value converges. In
these methods, x is started with a close value to the solution.
In the beginning, when there is no previous value, all voltage
magnitudes start as 1 and all voltage angles as 0 which is
known as flat start [31],

x = [0 0...0 1 1...1]T

After collecting m measurements and constructing the
Jacobian matrix H(x) at flat start, in WLS estimation, the
following steps are repeated until the state vector converges
to a solution,

• step 1: ∆x = (HTWH)−1HTW(z− h(x))
• step 2: xn+1 = xn +∆x
• step 3: update h(x) with x = xn+1

• step 4: update H(x) with x = xn+1

Here, the matrix, W denotes the relative weights of the
measurements which are usually taken as the inverse of the
corresponding error variances.

B. Distributed WLS Estimation

In case of distributed estimation, the system is divided in
different mutually exclusive or non-exclusive clusters. Each
cluster executes their local estimation. After completing esti-
mation, they exchange and update their results.

The local estimation is similar to the centralized estimation.
The only difference is that it includes only one cluster instead
of the whole system. For each cluster, a bus is taken as
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a reference and all measurements are normalized based on
that. As a result, the estimation results are also based on
those cluster references. After exchanging the results among
each other, the results of the intersections of the clusters are
updated. To do so, all of them are converted back to their
corresponding references. As the buses on the intersections
have different values for different clusters, their means can be
taken for further processing.

However, it is not mandatory that the local processes have
to run till complete convergence. The clusters may exchange
and update their results after completing a fixed number of
iterations. After updating, they can run the local processes
again and exchange and update accordingly.

III. SPATIAL MATRIX BASED CLUSTERING

The spatial matrix is a 2-D graph with the base nodes added
with some virtual nodes. The base nodes are the given nodes
with known physical locations. The virtual nodes are created
based on the base nodes to adapt the connectivity for the
clustering. The complete process is summarized in Fig. 1.

Form spatial 
matrix using 
either method 

1 or 2

Cluster the 
matrix to form 

the groups

Perform 
distributed 

operations on 
the groups

Start

Stop

Read 
coordinates 
of all nodes

Fig. 1: Flowchart for forming spatial matrix and executing
distributed operations.

A. Formation of Spatial Matrix

Spatial matrix is based on the spatial locations of the nodes
and the connectivity of the nodes. The connectivity matrix
plays an essential role in the formation of spatial matrix. If
a system has Nn number of nodes, then the basic or first
order connectivity matrix, B1 is defined as an Nn×Nn matrix
where,

B1(i, j) =

{
1 if node i and j are connected

0 otherwise

B1 represents the direct connections/edges of the network.
B1 can be used to find the second, third and higher order
connectivity matrices. It is done in the following way by taking
the power over B1, and converting the non-zero elements to
1,

B2 = B1 ×B1 (4)
B3 = B2 ×B1 (5)
B4 = B3 ×B1 (6)

Bn(i, j) =

{
1 if Bn(i, j) �= 0

0 otherwise

It can be noted that, all of B1, B2, B3, B4 are symmetric
matrices. Only one of them can be used in forming the spatial
matrix. Once the connectivity matrix is defined, the spatial
matrix is started with a 2-D graph. The base nodes are placed
on the graph according to their physical location. Then for
each edge in B1 (or higher orders, whatever is chosen) that
is connected with two nodes located at (x1, y1),and (x2, y2),
two virtual nodes are placed in one of the two methods,

• Method 1: at (x1, y2), and at (x2, y1)
• Method 2: at (x1 +α(x2 − x1), y1 +α(y2 − y1)), and at

(x2 + α(x1 − x2), y2 + α(y1 − y2))

Though α can take any value in between 0 and 1, the
preferred choice is 0.05 ≤ α ≤ 0.2. Both methods take the
neighbors close to each other. The details of the methods are
discussed in Section III-C and Fig. 2.

B. Clustering of Spatial Matrix

Once the matrix is formed, it can be clustered with any
standard clustering algorithm like the k-means clustering or
hierarchical clustering. In this paper, k-means is used to make
the clusters. With this method, the formed clusters contain base
as well as virtual nodes. After clustering, all virtual nodes are
converted back to their corresponding base nodes. As each
virtual node is connected with two base nodes, each of them
creates two nodes for the clusters. Then the clusters contain
multiple placements of the base nodes in each cluster. At the
end, the clusters are made precise by removing the redundant
elements.

The complete process of spatial matrix based clustering
using Method 1 is shown in Algorithm 1 where xbase is an
Nn×2 matrix with the x, and y coordinates of the nodes, and
Ng is the number of clusters.
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Fig. 2: Two methods to form the spatial matrix, (a) Method
1, (b) Method 2.

Algorithm 1 Pseudo-code for clustering with spatial matrix

1: Input xbase, Ng

2: Define xvir = [], and S = [1 : Nn; 1 : Nn]
T

3: for i = 1 : Nn do
4: for j = 1 : Nn do
5: if B(i, j) = 1 and i �= j then
6: xvir = [xvir; [xbase(i, 1) xbase(j, 2)]] // add

locations of the new nodes at the end of xvir

7: S = [S; i j] // add the corresponding node
numbers

8: end if
9: end for

10: end for
11: y = kmeans([xbase;xvir], Ng) // create Ng clusters
12: groups = cell(1, Ng) //create empty cells
13: for i = 1 : Ng do
14: groups{y(i)} = [groups{y(i)} S(i, :)]
15: end for
16: for i = 1 : Ng do
17: groups{i} = unique(groups{i}) // remove redundant

elements
18: end for
19: Return groups

For Method 2, Line 6 is replaced with,
xvir = [xvir; [xbase(i, 1) + α ∗ (xbase(j, 1) −
xbase(i, 1))xbase(i, 2) + α ∗ (xbase(j, 2)− xbase(i, 2))]],

where, 0 ≤ α ≤ 1

C. Analysis of Spatial Matrix

The advantage of spatial matrix over the simple location
based clustering is comprehensible from the formation of the
matrix. For example, let us consider a part of a network shown
in Fig. 2. The solid circles represent the base nodes, and the
non-solid ones show the virtual nodes. The solid lines show
the direct connection between the base nodes. Part (a) shows
the placement of the virtual nodes using method 1, and part
(b) shows that for method 2.

From the figure, it can be seen that the nodes at (x1, y1),
and (x2, y2) are physically far from each other though they are
first order neighbors. In case of direct application of k-means
clustering on the graph, it is very less probable that they will
be clustered together. Upon creation of the virtual nodes at
(x1, y2), and at (x2, y1) according to method 1, the neighbors
effectively come closer and the probability of having them
together increases significantly.

The virtual nodes can be taken even closer using method 2.
It creates the virtual nodes on the connecting lines of the base
nodes. The value of α can control the distance between the
base and virtual nodes. α = 0 or α = 1.0 means no distance,
while α = 0.5 means the maximum distance. At the maximum
distance, the virtual nodes stay in the mid of the base nodes.

IV. SIMULATION RESULTS

To test the effectiveness of the clustering by spatial matrix,
IEEE 14, 68, and 118-bus test systems are used. The 14-bus
system has 20 unique transmission lines with five generators.
For 68-bus system, the number of unique connections is 83,
and it has 16 generators as shown in Fig. 3. 118-bus system
has a total of 186 lines. The details of the systems can be
found in [32] (14-bus), [33] (68-bus) and in [32](118-bus). The
physical distances for both systems are calculated based on the
impedances of the network. The measurements are collected
at the rate of 30 samples/second that is the typical rate of the
phasor measurement units. Then an artificial Gaussian noise
of around 0.25-5% of the original measurements is added with
them.

A. Clusters Formed by Spatial Matrix

As mentioned earlier, the connectivity matrix has significant
impact on the formation of the clusters. The spatial matrices
formed by method 1 for different orders of connectivity for
IEEE 14-bus system are shown in Fig. 4. The blue stars show
the base nodes, and the red ones show the virtual nodes. It can
be seen that with the increase in order, the number of virtual
nodes increases. As a result, the connectivity gets stronger,
and the sparsity gets reduced.

Based on the order of connectivity, the clusters formed by
the k-means clustering are shown in Table I. The number of
clusters is set to five. For method 2, α is set to 0.1. The table
shows that with the increase in the order, the number of nodes
in a cluster increases. There will be an order at which, the
whole system will be included in one cluster. As the execution
time directly depends on the size of the cluster with maximum
nodes, a lower order of B is a preferred choice.
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Fig. 3: IEEE 16-machine 68-bus New-York-New England test system.
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Fig. 4: The placement of the base and virtual nodes of IEEE 14-bus system for different orders of connectivity. The locations
are clustered with k-means.
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Fig. 5: The placement of the base and virtual nodes of IEEE 68-bus system for different orders of connectivity. The locations
are clustered with k-means.
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are clustered with k-means.
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TABLE I-a: 14-bus system: Clusters formed by k-means clustering for different orders of connectivity with Ng = 5 using
method 1

Order of Clusters with bus numbers
connectivity

B1 {1 2 4 5 6},{9 10 11 12 13 14},{5 6 9 10 11 12 13},{1 2 3 4 5 6 7 8 9 13 14},{2 3 4 5 7 9}
B2 {1 2 3 4 5 6},{1 2 3 4 5 6 7 8 9 14},{1 2 4 5 6 7 9 10 11 12 13 14},{1 2 4 5 6 7 9 11 12 13},

{2 4 5 6 7 9 10 11 12 13 14}
B3 {1 2 3 4 5 6 7 8 9 12 13 14},{1 2 3 4 5 6 7 8 9 10 11 12 13 14},

{1 2 3 4 5 6 7 8 9 11 12 13 14 },{2 3 4 6 7 8 9 10 11 12 13 14 },
{1 2 3 4 5 6 7 8 9 10 11 12 13 14}

TABLE I-b: 14-bus system: Clusters formed by k-means clustering for different orders of connectivity with Ng = 5 using
method 2

Order of Clusters with bus numbers
connectivity

B1 {5 6 9 10 11 12 13 14},{ 2 3 4 5 7 8 9 10 14},{ 1 2 3 4 5 9 13 14 },{ 1 2 4 5 6},{ 2 3 4}
B2 { 4 5 6 7 9 10 11 12 13 14},{ 1 2 3 4 5 6 7 9 11 12 13},{ 1 2 3 4 5 6 7 8 9 10 11 13 14},

{ 1 2 3 4 5 6 7 9 10 12 13 14 }, { 1 2 4 5 6 10 11 12 13 14}
B3 { 1 2 3 4 5 6 7 9 10 11 12 13 14 },{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 },

{ 2 3 4 5 6 7 8 9 10 11 12 13 14 },{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 },
{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 }

TABLE II-a: 14-bus system: Clusters formed by k-means clustering for first order connectivity, B1 with different Ng using
method 1

Number of Clusters with bus numbers
clusters
Ng = 2 { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 },{ 1 2 4 5 6}
Ng = 3 {1 2 3 4 5 7 8 9 14 },{5 6 9 10 11 12 13 14},{1 2 4 5 6}
Ng = 4 {5 6 9 10 11 12 13 },{1 2 3 4 5 7 8 9 14 },{9 10 11 12 13 14 },{1 2 4 5 6}
Ng = 5 {5 6 9 10 11 12 13},{1 2 4 5 6},{1 2 3 4},{9 10 11 12 13 14 },{2 3 4 5 7 8 9 14}

TABLE II-b: 14-bus system: Clusters formed by k-means clustering for first order connectivity, B1 with different Ng using
method 2

Number of Clusters with bus numbers
clusters
Ng = 2 { 1 2 3 4 5 6 7 8 9 10 12 13 14},{ 1 2 4 5 6 9 10 11 12 13 }
Ng = 3 { 1 2 3 4 5 7 8 9 10 13 14 },{1 2 4 5 6 },{ 5 6 9 10 11 12 13 14 }
Ng = 4 { 2 3 4 5 7 8 9 10 14 },{ 1 2 4 5 6 },{ 9 10 11},{ 1 2 5 6 10 11 12 13 14}
Ng = 5 {5 6 9 10 11 12 13 14},{ 2 3 4 5 7 8 9 10 14},{ 1 2 3 4 5 9 13 14 },{ 1 2 4 5 6},{ 2 3 4}

TABLE III-a: 68-bus system: Clusters formed by k-means clustering with different orders of connectivity with Ng = 5 using
method 1

Order of Clusters with bus numbers
connectivity

B1 {1 21 22 23 24 25 26 27 28 29 58 59 61},
{1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 52 62 63 64 65},

{40 41 42 49 52 66 67},{35 37 39 43 44 45 50 51 52 68},
{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 53 54 55 56 57 60 }

B2 {40 41 42 45 46 48 49 50 51 52 66 67 68},{16 17 21 22 23 24 25 26 27 28 29 58 59 61},
{2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 36 54 55 56 57 58 59},

{1 2 3 4 5 7 8 9 14 16 17 18 21 24 25 26 27 28 29 30 31 47 53 60 61},
{1 2 3 5 7 8 9 17 25 26 27 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 62 63 64 65 66 68}
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TABLE III-b: 68-bus system: Clusters formed by k-means clustering with different orders of connectivity with Ng = 5 using
method 2

Order of Clusters with bus numbers
connectivity

B1 { 1 2 9 27 30 31 32 33 38 40 41 46 47 48 49 52 62},
{ 2 3 16 17 21 22 23 24 25 26 27 28 29 53 58 59 60 61 },

{ 8 9 30 32 33 34 35 36 37 38 39 43 44 45 50 51 63 64 65},{ 40 41 42 49 50 51 52 66 67 68},
{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 27 54 55 56 57}

B2 { 1 2 3 4 15 16 17 18 19 21 22 23 24 25 26 27 28 29 53 58 59 60 61},
{40 41 42 45 46 48 49 50 51 52 66 67 68 },

{ 1 5 7 8 9 30 31 32 33 34 35 36 37 38 39 43 44 45 46 50 51 52 63 64 65},
{ 1 2 3 8 9 17 25 26 27 30 31 32 33 34 35 36 38 40 41 42 45 46 47 48 49 50 51 52 53 62 63 66 68 },

{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 27 30 31 36 47 53 54 55 56 57 }

TABLE IV-a: 68-bus system: Clusters formed by k-means clustering for B1 with different Ng using method 1

Number of Clusters with bus numbers
clusters
Ng = 2 { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 53 54 55 56 57 58 59 60 61},
{1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 45 46 47 48 49 50 51 52 62 63 64 65 66 67 68}
Ng = 3 {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 53 54 55 56 57 60},
{1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 62 63 64 65 66 67 68},
{1 21 22 23 24 25 26 27 28 29 58 59 61}

Ng = 4 {1 2 3 4 8 9 15 16 17 18 19 21 22 24 25 26 27 28 29 53 60},
{1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 62 63 64 65 66 67 68},
{3 4 5 6 7 8 10 11 12 13 14 15 16 19 20 23 24 54 55 56 57},

{21 22 23 24 26 28 29 58 59 61}
Ng = 5 {1 21 22 23 24 25 26 27 28 29 58 59 61},

{1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 52 62 63 64 65},
{40 41 42 49 52 66 67},{35 37 39 43 44 45 50 51 52 68},

{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 53 54 55 56 57 60 }

TABLE IV-b: 68-bus system: Clusters formed by k-means clustering for B1 with different Ng using method 2

Number of Clusters with bus numbers
clusters
Ng = 2 { 1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 62 63 64 65 66 67 68},
{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 53 54 55 56 57 58 59 60 61}
Ng = 3 {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 53 54 55 56 57 58 59 60 61 },
{ 40 41 42 49 50 51 52 66 67 68 },

{ 1 2 8 9 27 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 50 51 52 62 63 64 65}
Ng = 4 { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 53 54 55 56 57 58 59 60 61},
{ 40 41 42 49 50 51 52 66 67 68},

{ 1 2 9 27 30 31 32 33 38 40 41 46 47 48 49 52 62 },
{ 8 9 30 32 33 34 35 36 37 38 39 43 44 45 50 51 63 64 65}

Ng = 5 { 1 2 9 27 30 31 32 33 38 40 41 46 47 48 49 52 62},
{ 2 3 16 17 21 22 23 24 25 26 27 28 29 53 58 59 60 61 },

{ 8 9 30 32 33 34 35 36 37 38 39 43 44 45 50 51 63 64 65},{ 40 41 42 49 50 51 52 66 67 68},
{ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 27 54 55 56 57}
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The effects of the number of groups on the formation of
clusters are shown in Table II. The clusters are made for the
first order of connectivity. It is clear from the table that with
the increase in the number of clusters, the sizes of the clusters
decrease and that makes the whole process faster.

A similar analysis is found for IEEE 68 and 118-bus test
system from Figs. 5, 6, and Tables III, IV.

B. Distributed Estimation of 14-bus System

The distributed estimation is applied on the steady state op-
eration for the 14-bus system. As the system does not change
over time, only one sample is estimated. The steady state
results are acquired using MATPOWER [32]. The actual, and
estimated values by the centralized and distributed estimators
with different methods for B1 connectivity and Ng = 5 are
shown in Table V.

From the table, it is seen that both methods perform well
in comparison to the centralized estimator. However, it is not
possible to yield a more accurate result than the centralized
WLS estimator, as it is the most accurate one with Gaussian
noise.

C. Distributed Estimation of 68-bus System

For 68-bus system, the simulation is executed for two
different cases with 150 samples of measurements over five
seconds, one with some random dynamic changes, another
with a large disturbance in the system. The measurements are
taken from Real-Time Digital Simulator. The total number of
iteration is set to ten. The estimated results are exchanged
every five iterations.

a) Case I: In this case, the change in the system is
taken with pseudo-random binary signals (PRBS) applied at
the excitation systems of the generators. This exhibits the
normal load change behavior of the system. Five clusters are
made with both methods using the first and second order
connectivity as shown in Table III. The norm of the residues
for 150 samples of data are shown in Fig. 7.

b) Case II: In case II, a three phase to ground fault is
simulated at bus 8 of the 68-bus system. The fault occurs at
time t = 1s. Similar to case I, five clusters are made with both
methods and 150 samples are taken over five seconds with a
higher noise level. The norms of the residues are shown in
Fig. 8.

For both cases, it can be seen that method 2 with the first
order connectivity has an overall low norm compared to other
methods and connectivity. As a result, it performs better than
others in terms of accuracy.

The mean absolute error (MAE) of the magnitude and
angles of the two cases are shown in Table VI. The MAE
for state i is defined as follows,

MAE(i) =
1

Ns

Ns∑
t=1

|xi(t)− x̂i(t)| (7)

where, Ns represents the number of samples.
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Fig. 7: The norms of the residues for the distributed state
estimation of the 68-bus system with PRBS signals at the
excitation of the generators.
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Fig. 8: The norms of the residues for the distributed state
estimation of the 68-bus system with a three phase line to
ground fault at bus 8.

V. ANALYSIS OF THE SIMULATION RESULTS

In this section, two important characteristics of an estimator,
accuracy and time, are analyzed for the simulation results
found in Section IV.

A. Accuracy

The accuracy of the estimators on the 68-bus system for
different number of clusters are shown in Figs. 9, 10, and
11. The 150 samples of case II is chosen for the comparison.
When the number of cluster is one, it refers to the centralized
estimation. From the figures, it can be seen that the norms
of the residues increase with the increase in the number of
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TABLE V: The actual and estimated values of the angles and magnitudes of 14-bus systems using different clustering methods
(Ng = 5, B1).

Bus No. θact Centralized Method 1 Method 2 |V |act Centralized Method 1 Method 2
1 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000
2 -0.086970 -0.085244 -0.087449 -0.085253 0.985849 0.986143 0.985646 0.986139
3 -0.222093 -0.221732 -0.224030 -0.221859 0.952830 0.953042 0.952413 0.952992
4 -0.179996 -0.178975 -0.180541 -0.179085 0.960377 0.960562 0.960090 0.960510
5 -0.153135 -0.152093 -0.153238 -0.151886 0.962264 0.962398 0.962130 0.962429
6 -0.248203 -0.248478 -0.248655 -0.248482 1.009434 1.009169 1.009128 1.009023
7 -0.233176 -0.233158 -0.233917 -0.232717 1.001887 1.001764 1.000970 1.001901
8 -0.233176 -0.233158 -0.233793 -0.232717 1.028302 1.027898 1.027679 1.028046
9 -0.260735 -0.260665 -0.261679 -0.259635 0.996226 0.996055 0.995548 0.996176
10 -0.263492 -0.263411 -0.264073 -0.263309 0.991509 0.991409 0.991129 0.991320
11 -0.258152 -0.258296 -0.258819 -0.258468 0.997170 0.996885 0.996722 0.996620
12 -0.263126 -0.263174 -0.263736 -0.263234 0.995283 0.994975 0.994895 0.994802
13 -0.264522 -0.264477 -0.265063 -0.263383 0.990566 0.990312 0.990190 0.990425
14 -0.279846 -0.279897 -0.280559 -0.278840 0.977358 0.977160 0.976864 0.977304

clusters. It means that the accuracy reduces with the number
of clusters.
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Fig. 9: The accuracy of the centralized and distributed estima-
tion for 150 samples with clusters formed by method 1 with
second order connectivity.
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Fig. 10: The accuracy of the centralized and distributed
estimation for 150 samples with different number of clusters
formed by method 2 with first order connectivity.
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Fig. 11: The accuracy of the centralized and distributed
estimation for 150 samples with different number of clusters
formed by method 2 with second order connectivity.

The reason behind this behavior is the effects of the reduced
number of measurements in the clusters. The centralized
estimator takes all measurements at a time and gets a better
Probability Density Function (PDF) for the Gaussian noise. On
the other hand, in the distributed estimation, each cluster works
on a part of the measurement set, and the PDF becomes less
similar to the Gaussian nature. Though the exchange process
improves the results to some extent, it cannot recover the
accuracy completely.

It should be kept in mind that, though the norms of the
residues of the distributed systems are several times that of the
centralized estimator, the difference between the actual value
and the estimated values do not differ much as shown in Table
VI. It is due to the fact that, the norms change a lot for a small
change in the estimated values. As a result, the accuracy of
the distributed estimation can be considered as acceptable.

B. Required Time

The required time by different number of clusters is shown
in Figs. 12 to 15. The first three figures are for IEEE 68-
bus system, where the last one is for 118-bus system. The
simulation is run on an Intel Core 2 Duo 2.2GHz processor
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TABLE VI: The mean absolute errors of the estimated value
and the actual value of the magnitudes and angles of 68 buses
using method 1 (Ng = 5, B1).

Bus No. Case I Case II
θ |V | θ |V |

1 0.000000 0.000000 0.000000 0.000000
2 0.000013 0.000978 0.000902 0.000510
3 0.000000 0.000931 0.001057 0.000567
4 0.000073 0.001166 0.000255 0.000935
5 0.000117 0.001629 0.000183 0.001320
6 0.000130 0.000699 0.000031 0.000214
7 0.000113 0.001690 0.000434 0.001458
8 0.000121 0.001703 0.000428 0.001440
9 0.000162 0.001778 0.000364 0.001175
10 0.000167 0.000845 0.000609 0.000277
11 0.000148 0.000952 0.000696 0.000106
12 0.000165 0.000855 0.000493 0.000335
13 0.000142 0.000167 0.000140 0.000188
14 0.000016 0.002005 0.000689 0.000958
15 0.000324 0.000356 0.001341 0.000053
16 0.000127 0.000591 0.000805 0.000342
17 0.000056 0.000214 0.000837 0.000073
18 0.000094 0.001558 0.001318 0.000833
19 0.000203 0.001039 0.001402 0.000108
20 0.000218 0.001334 0.001474 0.000214
21 0.000179 0.001090 0.000959 0.000126
22 0.000199 0.000001 0.002603 0.000586
23 0.000191 0.000217 0.002610 0.000709
24 0.000035 0.000242 0.000803 0.000282
25 0.000025 0.001105 0.001226 0.000352
26 0.000082 0.001116 0.000707 0.000020
27 0.000035 0.000059 0.000610 0.000048
28 0.000223 0.003942 0.001235 0.000079
29 0.000202 0.003613 0.001673 0.000139
30 0.000460 0.000705 0.000428 0.000768
31 0.000190 0.000274 0.000226 0.000490
32 0.000560 0.000223 0.001491 0.001041
33 0.000448 0.001153 0.002433 0.001111
34 0.000484 0.002012 0.005201 0.000985
35 0.000448 0.001987 0.005167 0.001024
36 0.000029 0.002220 0.005184 0.000498
37 0.000235 0.001615 0.003642 0.000721
38 0.000201 0.000009 0.000201 0.000590
39 0.000160 0.003472 0.005098 0.000705
40 0.000136 0.000211 0.000006 0.000393
41 0.000145 0.001068 0.000304 0.002817
42 0.000164 0.001536 0.001983 0.001621
43 0.000217 0.002522 0.004436 0.000665
44 0.000214 0.002553 0.004439 0.000675
45 0.000159 0.001705 0.010978 0.004562
46 0.000143 0.000046 0.002983 0.000230
47 0.000102 0.000147 0.000074 0.000936
48 0.000098 0.000119 0.000726 0.000616
49 0.000060 0.002955 0.002767 0.000598
50 0.000184 0.001857 0.004737 0.002755
51 0.000188 0.001859 0.008884 0.004378
52 0.000169 0.001832 0.002237 0.000994
53 0.000039 0.001298 0.000840 0.000855
54 0.000153 0.000707 0.000039 0.000208
55 0.000148 0.000840 0.000591 0.000278
56 0.000213 0.001018 0.001386 0.000115
57 0.000235 0.001312 0.001491 0.000224
58 0.000180 0.000024 0.002608 0.000577
59 0.000193 0.000208 0.002627 0.000712
60 0.000165 0.002738 0.000810 0.001261
61 0.000235 0.003623 0.001689 0.000154
62 0.000183 0.000226 0.000166 0.000511
63 0.000559 0.000235 0.001475 0.001056
64 0.000158 0.002649 0.005030 0.000686
65 0.000237 0.001621 0.003622 0.000736
66 0.000143 0.001045 0.000328 0.002819
67 0.000078 0.000430 0.001197 0.003703
68 0.000158 0.001815 0.002256 0.000973

with 4GB of memory. The effectiveness of the distributed
estimation can be realized from the figures. There exist some
outliers which are caused by the background processes of the
computing machine. It is not unusual to have these outliers
in a generic computer. If the outliers are excluded, it can be
seen that for all methods, the execution time is significantly
less compared to the centralized one.
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Fig. 12: The required time for 150 samples by different number
of clusters formed by method 1 with second order connectivity.
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Fig. 13: The required time for 150 samples by different number
of clusters formed by method 2 with first order connectivity.
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Fig. 14: The required time for 150 samples by different number
of clusters formed by method 2 with second order connectivity.
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Fig. 15: The required time for 150 samples of IEEE 118-
bus test system by different number of clusters formed with
method 2 and first order connectivity.

However, it can also be observed that the execution time
did not reduce with the increased number of clusters. This is
due to the fact that the execution time does not depend on the
number of clusters, rather on the size of the largest cluster. As
the clusters run in parallel in the distributed estimation, the
overall execution time is determined by the slowest cluster
i.e. the largest cluster.

VI. CONCLUSION

In this paper, a new graph called sparse matrix is proposed
and its advantages are demonstrated to automatically cluster
the electric power network. Two different methods are mixed
with different orders of connectivity to find the best candidate
for the matrix. It is applied on the state estimation of IEEE
14, 68, and 118-bus systems under different conditions and
the computations are made faster than the existing centralized
method. In reality, the system may include thousands of buses
and a distributed estimation can make it fast enough for real-
time operations.

From analytic and simulation results, it is shown that the
sparse matrix graph can be effective in making coherent
clusters of any networked system. Even though it is applied on
a specific application of power system transmission network
in this paper, it can also be applied to a varied range of
applications with sparse networked systems. In future, the
graph can be grouped with other clustering algorithms like
mean-shift clustering or agglomerative hierarchical clustering.
Some deep learning techniques can also be applied to find an
improved results.
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