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This study evaluates the utility of Sentinel-2 satellite products for monitoring spatial and temporal changes 
in chlorophyll a (Chl-a) concentration within an urban, eutrophic estuary. Four atmospheric correction 
(AC) processors, namely Acolite, C2RCC, Sen2Cor, and Polymer, are assessed together with eight different 
parameterisations of three high-biomass-appropriate empirical Chl-a retrieval algorithms, namely the 
2-band, 3-band and normalised difference chlorophyll index (NDCI). The best performance is achieved using 
Sen2Cor and the NDCI, which provides an average absolute percentage difference, bias, and correlation 
of 173%, 23.8% and 0.853 (p < 0.05), respectively, which improves to 61.7%, 5.4% and 0.843 (p < 0.05), 
respectively, for conditions where Chl-a > 10 mg/m3. These results indicate that an appropriately configured 
NDCI algorithm applied to the default Sentinel-2 Level 2 product can be used for routine aquatic water 
quality monitoring applications for mesotrophic and eutrophic estuaries in the South African context. 
Monitoring approaches for estuary water quality are essential, as there is an increase in urban runoff and 
untreated inputs from malfunctioning wastewater treatment systems. The results inform water quality 
monitoring and management of similar sized estuaries globally. Remote sensing can complement in situ 
measurements and provide a holistic overview of a system.
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INTRODUCTION

Chlorophyll a (Chl-a) concentration is often used as a proxy for phytoplankton biomass and serves 
as an indicator for estuarine eutrophication that occurs as a consequence of anthropogenic nutrient 
enrichment (Lemley et al., 2015). In situ monitoring can be expensive, time-consuming, and under-
representative of an entire water body’s geographic extent or temporal changes. Satellite-derived data 
products provide a routine, inexpensive means to assess a system’s spatial and temporal scales of 
variability. Remote sensing has some known limitations regarding the information it can retrieve, 
such as being limited to the surface layers of a water body, being impacted by cloud cover, and only 
being capable of retrieving some water quality indicators (IOCCG, 2018); as such it is not meant to 
replace in situ measurements, but can offer complementary information that provides a more holistic 
overview of a system.

Operational satellite-based products are routinely provided over the coastal marine environment 
through the South African National Ocean and Coastal Information Management System (OCIMS; 
Krug et al., 2024); however, these moderate spatial resolution products (300 m) do not have appropriately 
high spatial resolution to resolve the fine-scale variability within almost all of South Africa’s estuaries. 
The Operational Land Imager (OLI) on board Landsat-8 and the Multi-Spectral Instrument (MSI) on 
board the Sentinel-2 constellation both offer appropriate spatial resolutions and can provide science-
quality products over coastal and inland waters (Ansper and Alikas, 2018; Franz et al., 2015; Llodrà-
Llabrés et al., 2023; Vanhellemont and Ruddick, 2015). While Landsat-8 only has a 16-day revisit 
time and 30 m spatial resolution, Sentinel-2 has a 5-day revisit time and 10–60 m spatial resolution, 
with the addition of a 705 nm band which is particularly useful for deriving Chl-a concentrations in 
inland, eutrophic, or optically complex waters (Moses et al., 2009). Although MSI was designed for 
land applications, it has sufficient spectral and radiometric performance to facilitate remote sensing of 
smaller aquatic targets (Pahlevan et al., 2017). Many studies have used Sentinel-2 to detect water column 
Chl-a concentration (Llodrà-Llabrés et al., 2023, and references therein). However, it has not been 
widely used to monitor Chl-a in water bodies under 1 km2 in size. Bangira et al. (2023) showed that, at 
the time of publication, there had been only 8 studies (in English, in peer-reviewed journals accredited 
by the South African Department of Higher Education and Training) that used Sentinel-2 data for 
case studies estimating water quality indicators in African reservoirs, of which only two represented 
estimations of Chl-a. Only two peer-reviewed studies have assessed Sentinel-2 performance for 
monitoring Chl-a in South African reservoirs (Obaid et al., 2021; Ndou, 2023). However, none have 
considered estuarine environments or different atmospheric correction methods. The current study 
aims to assess the performance of a selection of established, freely available atmospheric correction 
methods for Sentinel-2, in combination with several published Chl-a algorithms, in a small, eutrophic 
estuary. The results will inform the potential and limitations of operational remotely sensed water 
quality management in the Swartkops Estuary, and similar environments.
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METHODOLOGY

Sampling site and in situ measurements

The Swartkops Estuary is a predominantly open low-inflow 
estuary located on the warm temperate south coast of South 
Africa. The estuary is highly urbanised and susceptible to 
eutrophic conditions due to excessive nutrient inputs from 
adjacent stormwater outlets (Lemley et al., 2022; Mmachaka  
et al., 2023) and upstream wastewater treatment works (Lemley 
et al., 2023). Similarly, the augmented nature of these nutrient-
rich baseflows has reduced hydrological variability in the middle 
to upper reaches of the estuary and facilitated the accumulation 
of high-biomass phytoplankton blooms in these areas (Adams 
et al., 2025). This study focuses on estuarine spatial survey data 
collected from April 2019 to October 2021, covering austral 
seasonal variability and HAB events. Surface water samples were 
collected at 6 fixed stations, as shown in Fig. 1, and phytoplankton 
biomass (measured as Chl-a concentration) was determined 
spectrophotometrically according to the methods of Nusch 
(1980). The Chl-a concentration ranged from 0.5 to 744.8 mg/m3 
during the study period (Lemley et al., 2023). Samples were taken 
within the centre of the main channel, approximately 50 and 20 m 
from shore at Stations 1–5 and 6, respectively. The optical depth 
varied between sampling dates within the range of 0.3 to 2.2 m, 
but it was always highest near the mouth and declined upstream.

Satellite data: Matchup and data extraction procedure

Level-1C data for Tile T35HLC from Sentinel-2 MSI were obtained 
from the Copernicus Open Access Hub (2023). Only satellite 
data from valid water pixels were considered for matchups, with 
reflectance > 0, ±3 hours from an in situ measurement. Satellite 
estimates were extracted over a 3 x 3 pixel box, equivalent to 30 
x 30 m, centred over the matchup station, but were only used 
if consisting of >4 valid pixels. A glint mask was applied to the 
Sen2Cor data by discarding all data where the reflectance at 
the 1 610 nm band was greater than 0.05. The 9 different dates 
and times that coincided with Sentinel-2 satellite overpasses are 
shown in Table 1.

Additional processing and time-series analyses of Sentinel-2 
Level-2A data were performed using the Digital Earth Africa 
(2024) Analysis Sandbox. The Digital Earth Africa Analysis 
Sandbox is a free Cloud-based platform that operates using 
a Jupyter Lab environment, allowing access to analysis-ready 
datasets covering all of Africa.

Satellite data: atmospheric correction

This study compared the outputs of 4 different atmospheric 
correction (AC) procedures. The atmospheric correction for OLI 
‘lite’ (Acolite; v.20221114) (Vanhellemont and Ruddick, 2018) 
is an image-based AC model for use over inland and coastal 
waters. The dark spectrum fitting (DSF) approach (Vanhellemont, 
2019) was applied using the default settings without the mask for 
negative water-leaving reflectance.

The Case 2 Regional CoastColour (C2RCC; v1.2) per-pixel 
artificial neural network inversion (Brockmann et al., 2016) was 
applied using the Sentinel Application Platform (SNAP v.9.0) 
graph processing tool with default settings.

Figure 1. Locations of the 6 sampling stations on the Swartkops Estuary in relation to point sources of nutrient inputs from the Chatty River (CR), 
Markman Canal (MMC), and Motherwell Canal (MWC) (adapted from Lemley et al., 2023, Fig. 1)

Table 1. Date and time (UTC) of Sentinel-2 overpasses, which coincided 
with in situ matchup data

Number Date Time: 
Sentinel-2A

Time: 
Sentinel-2B

1 25 April 2019 07:56:11

2 4 February 2020 08:00:29

3 24 February 2020 07:59:19

4 2 March 2020 07:48:29

5 5 March 2020 07:58:09

6 5 June 2020 07:46:21

7 25 June 2020 07:46:21

8 12 November 2020 07:51:51

9 26 January 2021 07:51:09
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The polynomial-based algorithm applied to MERIS (Polymer; 
v4.13) (Steinmetz et al., 2011; Steinmetz and Ramon, 2018) is a 
physical model that uses a spectral matching method based on a 
polynomial to model the spectral reflectance of the atmosphere 
and sunglint, a water reflectance model, and utilises all visible 
spectral bands in the correction.

Sentinel-2 Correction (Sen2Cor; v.2.11) (Main-Knorn et al., 2017; 
Müller-Wilm et al., 2018) is the default AC for the Sentinel-2 
Level-2A land product. The approach requires the presence of 
dark, dense vegetation, water or dark soil pixels in an image to 
be used as a reference (Kaufman et al., 1997). It operates on the 
assumption that the ratios between the bottom of the atmosphere 
reflectances at different wavelengths (490 and 665 to 2 190 nm) 
are constant.

All outputs were either automatically provided at, or resampled to, 
10 m spatial resolution. Where the AC output was not provided 
automatically as Rrs, the output reflectance was divided by pi. To 
facilitate the operational application of water quality monitoring, 
this study focused on efficient and freely available AC algorithms 
that do not require human or external input and can be easily 
incorporated into computational processing chains; in this study, 
all algorithms were operated using Python 3.9.

Chl-a algorithms

The Swartkops Estuary provides an ideal case study to test the 
efficacy of Sentinel-2 processing algorithms for monitoring Chl-a 
concentrations in small complex estuaries, due to its eutrophic 
nature. The severity of eutrophic symptoms in the system is 
evidenced by near-year-round accumulations of high-biomass 
phytoplankton blooms (>60 mg/m3) in the high-retention middle 
to upper reaches (Adams et al., 2019; Lemley et al., 2023). As such, 
we focused on the assessment of algorithms with previous success 
in high-biomass optically complex environments operating in 
the red, red-edge, and NIR spectral regions. We evaluated the 
performance of three of the most well-established Chl-a retrieval 
indices for Sentinel-2 (Llodrà-Llabrés et al., 2023), including the 
2-band (2B) (Gitelson and Kondratyev, 1991) and 3-band (3B) 
algorithms (Dall’Olmo et al., 2003), and the normalised difference 
chlorophyll index (NDCI) (Mishra and Mishra, 2012).

2B = R705

R665
                                           (1)

3B = ( 1
R665

 – 1
R705 ) R740                                                       (2)

NDCI = R705 – R665

R705 + R665
                                    (3)

As the matchup dataset was relatively small, we assessed the 
algorithm performance using existing calibrations from the 
literature instead of deriving site-specific coefficients for each 

of the Chl-a algorithms. A list of the calibrations used for Chl-a 
estimations, their references, and the range over which they were 
parameterized are shown in Table 2 and includes three different 
calibrations for the 2-band algorithm, two for the 3-band 
algorithm, and three for the NDCI.

Statistical metrics

Standard statistical metrics were used to determine the 
performance of each model output from the combination of 
the AC and Chl-a algorithm compared to the in situ Chl-a 
concentration. The metrics included the number of matchups (N), 
coefficient of determination (R2), root-mean-square difference 
(RMSD), average absolute percentage difference (RPD), mean 
absolute difference (MAD) and the bias, expressed as follows:
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MAD log Chl Chlmod meas� ���1
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N log                  (6)

Bias Chl Chlmod meas� �� � ���1 1001 10 10N i
N log log               (7)

where: Chlmod is the algorithm-derived Chl-a output and Chlmeas 
is the in situ Chl-a. Since the distribution of Chl-a in the aquatic 
environment is log-normal (Campbell, 1995), the estimation of 
RMSD, MAD, bias and R2 were performed on logarithmically 
transformed data. The significance of the correlation between 
in situ and satellite-derived Chl-a was evaluated using a Pearson 
correlation coefficient and a 2-tailed t-test. The null hypothesis 
(H0: no correlation) was rejected if p < 0.05. Calculations were 
performed in Python (SciPy v1.10.1; Virtanen et al., 2020) 
using the pearsonr function, which accounts for sample size and 
correlation strength.

The performance of the combined AC and Chl-a algorithms was 
evaluated by Ogashawara et al. (2021), using a quantitative scoring 
system to rank their performance relative to the average statistical 
performance. Points were assigned based on standard deviation. 
For the RMSD, MAD, RPD and bias statistics, a score of 2, 1, or 0 
was awarded where the algorithm statistic was within 1, 2 or more 
standard deviations of zero, respectively. For R2, where the desired 
result was as close to 1 as possible, a score of 2, 1 or 0 was awarded 
when the algorithm statistic was within 1, 2 or more standard 
deviations of 1, respectively. For the N statistics, a score of 2, 1, 
or 0 was awarded if the total was within 1, 2 or more standard 
deviations of the maximum number of matchups, respectively. 

Table 2. The algorithms used for Chl-a concentration retrieval from Sentinel-2 MSI data, showing the algorithm acronym, the equation with 
coefficients, the reference publication, and the Chl-a range over which the parameterisation was developed

Algorithm Equation Reference Chl-a range (mg/m3)

GL2B (35.745(2B) − 19.295)1.124 Gilerson et al. (2010) 0–80

GR2B 25.28(2B)2 + 14.85(2B) + 15.18 Gurlin et al. (2011) 2.3–200.8

MS2B 61.324(2B) − 37.94 Moses et al. (2009) 0–70

GR3B 315.50(3B)2 + 215.95(3B) + 25.66 Gurlin et al. (2011) 2.3–200.8

MS3B 232.329(3B) + 23.174 Moses et al. (2009) 0–70

M1ND 314.97(NCDI)2 + 236.5(NCDI) + 42.197 Mishra and Mishra (2012) 0–30

M2ND 194.325(NCDI)2 + 86.115(NCDI) + 14.039 Mishra and Mishra (2012) 0–30

MCND 762.6(NCDI)2 + 207.4(NCDI) + 16.4 Maciel et al. (2023) 0.4–180
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A total of 12 points could be scored, where the highest score 
represents the best-performing combination of algorithms. A 
flow diagram outlining all methods from Sentinel-2 download to 
final algorithm selection is provided in Fig. 2.

RESULTS AND DISCUSSION

AC and Chl-a algorithm performance

Although the current study is limited in its ability to comment 
on AC performance due to the lack of in situ radiometric 
measurements, this limitation is shared with many parts of 
the world. It should not be a prohibitive factor in evaluating 
the application of remote sensing data in under-represented 
areas. Several studies have even suggested that detecting Chl-a 
concentration in more eutrophic conditions is less affected by the 
selected AC product (Grendaité and Stonevičius, 2022; Matthews 
and Odermatt, 2015). As in Grendaité and Stonevičius (2022), 
the current study aims to comment on the performance of the 
combined output of the AC and the existing Chl-a algorithms in 
terms of applicability for water quality monitoring. Chegoonian 
et al. (2023) found that a combined assessment provided useful 
information regarding the desired application, e.g., improved 
accuracy or temporal stability. Pahlevan et al. (2021) also noted 
that globally there is no single solution for inland and coastal 
waters. AC processors should be selected according to the 
scientific objective or application.

The remote sensing reflectance (Rrs) outputs of the four AC 
schemes for several matchup stations are provided in Fig. 3, 
whereas the statistical performance of each of the 32 AC and 
Chl-a algorithm combinations are provided in Table 3. Overall, 
the C2RCC has a relatively flat spectral shape and slight variation 
in peaks and troughs, whereas only the magnitude of the entire 
reflectance spectrum changes between dates and stations. 
All Chl-a algorithms applied resulted in a generally negative 
bias, elevated RMSD (>0.812), low R2 (<0.1) and no significant 
correlations (p > 0.05) (Table 3). Ansper and Alikas (2018) found 
that the C2RCC did not show good sensitivity in reproducing the 

absorption signal of Chl-a at 665 nm, which may explain the flat 
spectral shape and poor statistical performance for the C2RCC 
compared to the other AC algorithms.

Overall, Acolite showed the lowest scores and the least valid 
retrievals, and outputs were not available for all the matchups, 
possibly due to stringent default non-water masking settings that 
remove top-of-atmosphere data when the radiance at 1 600 nm 
is greater than 0.0215. Where Acolite reflectance is produced, it 
generally has a spectral shape and magnitude like that of Sen2Cor 
and is elevated in the visible range compared to C2RCC and 
Polymer; Sent et al. (2021) had similar findings for the Sado 
Estuary in Portugal where Acolite also over-estimated the Rrs 
compared to C2RCC and Polymer. Pereira-Sandoval et al. (2019) 
found that the performance of Sen2Cor and Acolite, in terms of 
statistical matchups with in situ reflectance, showed a relatively 
consistent mean absolute error and positive bias across the 
spectral range. However, that statistical performance improved 
over more eutrophic inland water types.

Although the magnitude for Sen2Cor is consistently elevated 
compared to the other ACs, it has a very similar spectral shape to 
that of Polymer in the red to near-infrared spectral range where 
in situ Chl-a was >30 mg/m3 (Fig. 3b, c, d and f). In these cases 
the 705 nm reflectance peak, an important feature for Chl-a 
estimation in optically complex and eutrophic waters, is evident 
for both Sen2Cor and Polymer. Warren et al. (2019) further 
found that outputs from Sen2Cor had a lower spectral angle (i.e., 
more similar spectral shape to in situ reflectance) than Polymer 
over European inland waters. Studies have shown that although 
Sen2Cor performs poorly in coastal and marine waters, it tends to 
provide results comparable to other AC methods in inland waters 
(Warren et al., 2019; Grendaité and Stonevičius, 2022).

The best three combinations of AC-Chl algorithms, each with a 
score of 7, resulted from a combination of the NDCI algorithm 
with either Sen2Cor using the coefficients of Maciel et al. (2023) 
(MCND from Table 2) or with Sen2Cor and Polymer using the 
coefficients of Mishra and Mishra (2012) (M2ND from Table 2).  

Figure 2. A diagram of satellite data processing and algorithm application
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Chawla et al. (2020) noted that the NDCI is superior to the 2B and 
3B algorithms in turbid productive waters, while Makwinja et al. 
(2023) found that a quadratic function for NDCI, applied to Sen2Cor 
reflectance, produced satisfactory performance for mapping 
Chl-a of Lake Malombe, Malawi. To choose the best-performing 
combination of these three, the scatter plots and statistics over 
the entire in situ Chl-a range, as well as over Chl-a measurements 
exceeding 10 mg/m3, are shown in Fig. 4. Although the combination 

of Sen2Cor and M2ND produced a smaller RPD and bias than the 
other combinations throughout the entire range of in situ Chl-a 
concentrations, the combination of Sen2Cor and MCND was 
closer to the 1:1 line when the in situ Chl-a concentrations were 
elevated, with a more negligible bias, RMSD, and MAD than the 
other two combinations. This makes it potentially more appropriate 
to monitor eutrophication. The Sen2Cor-MCND combination was 
selected for all subsequent calculations.

Table 3. The statistical performance of each AC and Chl-a algorithm (Chl-a Algo) combination, including the root-mean-squared-difference 
(RMSD), mean absolute difference (MAD), average absolute percent difference (RPD), bias, R2, and number of positive modelled results (N) used 
for comparing modelled Chl-a (from algorithms applied to satellite reflectance) to in situ Chl-a, and the performance score. The three best-
performing algorithms are indicated with *. Results that did not have a significant correlation (p > 0.05) are shown in italics.

AC Chl-a 
Algo

RMSD MAD RPD (%) Bias (%) R2 p-value N Score

*Sen2Cor MCND 0.448 0.356 173.3 23.8 0.728 3.01 x 10−8 26 7

Polymer MCND 0.61 0.409 290 12.4 0.545 2.79 x 10−7 36 6

ACOLITE MCND 0.477 0.377 211.8 35 0.65 0.0016 12 4

C2RCC MCND 1.036 0.841 100.6 −65.9 0.08 0.1060 34 5

Sen2Cor M1ND 0.697 0.574 469.8 49.4 0.757 7.84 x 10−9 26 4

Polymer M1ND 0.707 0.509 477.5 20.3 0.436 1.19 x 10−5 36 4

ACOLITE M1ND 0.847 0.774 698.8 77.4 0.67 0.0011 12 1

C2RCC M1ND 0.948 0.793 386.7 −3.7 0.095 0.0759 34 5

*Sen2Cor M2ND 0.468 0.394 137.9 5.1 0.781 2.14 x 10−9 26 7

*Polymer M2ND 0.564 0.399 171.7 −8.8 0.603 2.59 x 10−8 36 7

ACOLITE M2ND 0.455 0.388 185.6 31.7 0.709 0.0006 12 5

C2RCC M2ND 0.969 0.778 136.5 −46.1 0.015 0.4932 34 5

Sen2Cor GL2B 0.548 0.463 240.6 23.1 0.767 4.72 x 10−9 26 6

Polymer GL2B 0.618 0.44 259.5 4.2 0.511 9.86 x 10−7 36 6

ACOLITE GL2B 0.63 0.548 355 52.3 0.693 0.0008 12 3

C2RCC GL2B 0.957 0.777 228.5 −25 0.094 0.0772 34 5

Sen2Cor GR2B 0.787 0.646 645.8 55.7 0.758 7.43 x 10−9 26 4

Polymer GR2B 0.826 0.7 787.5 56.4 0.526 5.67 x 10−7 36 4

ACOLITE GR2B 0.999 0.911 1069.6 91.1 0.755 0.0002 12 2

C2RCC GR2B 0.892 0.783 715.8 28.9 0.045 0.2291 34 4

Sen2Cor MS2B 0.546 0.462 239.6 23 0.751 1.05 x 10−8 26 6

Polymer MS2B 0.607 0.434 261 2.4 0.524 1.30 x 10−6 34 6

ACOLITE MS2B 0.621 0.537 346.4 51.4 0.663 0.0013 12 3

C2RCC MS2B 0.812 0.683 217 −15.1 0.003 0.7781 32 6

Sen2Cor GR3B 0.583 0.481 308.9 42.7 0.721 4.15 x 10−8 26 5

Polymer GR3B 0.611 0.461 437 33.3 0.691 6.16 x 10−10 35 5

ACOLITE GR3B 0.681 0.603 412.1 50.5 0.516 0.008476 12 3

C2RCC GR3B 0.887 0.751 252.5 −17.6 0.067 0.140414 34 5

Sen2Cor MS3B 0.539 0.425 256.2 33.6 0.703 1.68 x 10−7 25 5

Polymer MS3B 0.511 0.34 348.5 16.8 0.685 9.14 x 10−9 31 6

ACOLITE MS3B 0.619 0.499 357 34.8 0.479 0.0183 11 3

C2RCC MS3B 0.831 0.687 194.1 −20.7 0 0.9880 32 6
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Figure 3. Rrs spectra of extracted matchup pixels showing outputs from the different ACs at a selection of stations in the Swartkops Estuary

Figure 4. Scatterplots of the best-performing AC and Chl-a algorithm combinations (from Table 2). Panels a–c show all the available data, 
whereas panels d–f show only the data and statistics where in situ Chl-a >10 mg/m3
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Regarding uncertainties for Chl-a retrievals

Several factors might contribute to the increase in the uncertainty 
of satellite-derived products. Although in situ measurements are 
often considered to represent the ‘truth’, standard methods for the 
determination of Chl-a, such as the fluorometric method, can 
have uncertainties of over 30% (Trees et al., 1985). There is also a 
spatial mismatch between the use of point-based measurements to 
represent an entire basin of a water body compared to the depth and 
spatial integration approach of satellite measurements (Papenfus 
et al., 2020). While the time window between field sampling and 
satellite data collection could affect the uncertainty, it should not 
be an issue in this study, as ± 3h aligns with recommendations 
for river systems (Kuhn et al., 2019) and is at the lower end of 
most matchup windows (Llodrà-Llabrés et al., 2023), which can 
range up to 12 days (Li et al., 2021). Uncertainties are expected 
to be greater in inland waters compared to coastal and oceanic 
environments (Pahlevan et al., 2021). For example, uncertainties 
ranged from approximately 10–1 400% for 70 AC and Chl-a 
algorithm combinations when applied to Sentinel-2 MSI data 
over Lithuanian lakes (Grendaité and Stonevičius, 2022).

Product uncertainty is also elevated in areas affected by adjacency 
effects (AE) (Warren et al., 2021), when the relatively greater 
reflectance from neighbouring land pixels influences those of 
the darker water pixels, which becomes apparent at wavelengths  
> 700 nm; however, studies found that AE may have a more minor 
impact when aquatic Chl-a concentrations are relatively high and 
if the water target is surrounded by green vegetation (Bulgarelli 
and Zibordi, 2018; Ruescas et al., 2016). In the current study, 
Sen2Cor and Acolite overestimated in the longer wavelengths 
compared to C2RCC and Polymer; Pereira-Sandoval et al. (2019) 
found that the reflectance at 740 and 783 nm for Sen2Cor and 
Acolite was higher than the in situ values, which they attributed to 
AE. It may be concluded that under increased AE conditions, the 
use of the 3-band algorithm (which includes longer wavelengths) 
might result in poorer performance and greater variations in 
performance between ACs.

This study supports the use of the NDCI coupled with Sen2Cor 
for monitoring eutrophication in the Swartkops Estuary – a 
methodology potentially transferable to similarly eutrophic 
estuaries surrounded by vegetation. It should be noted that, due 
to the dependence of Sen2Cor on the presence of dark vegetation 

for its correction, its accuracy could decrease in regions with less 
vegetation (Bui et al., 2022; Ruescas et al., 2016). Care should be 
taken in areas where the bottom of the estuary is visible, as these 
are likely to lead to an overestimation of satellite-derived Chl-a 
concentration. However, this is more likely to have an effect in the 
lower reaches of the estuary, where the water clarity is increased. The 
proposed algorithm combination has also shown poor performance 
at lower Chl-a concentration ranges. Future studies could consider 
using algorithm merging (e.g., Smith et al., 2018; Schaeffer et al., 
2022) or applying an optical water-type approach, where the 
per-pixel spectral shape is considered and used to determine 
the most appropriate Chl-a algorithm or AC-Chl algorithm 
combination (e.g., Pahlevan et al., 2021; Soomets et al., 2020) 
to reduce uncertainties.

Implications for operational application and 
management opportunities

While high accuracy may be required for scientific studies, it is 
acknowledged that, typically, operational management could 
benefit from more qualitative metrics. Even with high uncertainty, 
concentration changes can be detected if the product is derived 
using a consistent methodology (Schaeffer et al., 2013). Several 
studies have pointed out the value of satellite-derived information 
even in the absence of accurate regressions between in situ 
and satellite data, particularly in terms of harmful algal bloom 
advisories, where a simple absence or presence information is 
desired (Schaeffer et al., 2018); similarly, categorical classification 
into trophic levels (Papenfus et al., 2020) can be helpful for water 
quality management purposes.

The selected AC-Chl algorithm combination was applied to a 
time series of Sentinel-2 reflectance on the Digital Earth Africa 
platform. Satellite-derived Chl-a concentrations were extracted at 
each station between April 2019 and October 2021, corresponding 
to the period represented by the in situ Chl-a dataset from Lemley 
et al. (2023). Figure 5 compares the in situ and satellite-derived 
concentrations for each station. The distributions are remarkably 
similar in terms of median values and concentration ranges, 
considering the varied temporal scales represented by the two 
datasets. Satellite data is rarely available for Station 6, as water 
hyacinth (Pontederia crassipes) frequently obscures the surface 
(Lakane et al., 2024). However, the spatial variations over most of 
the estuary are routinely captured by satellite data.

Figure 5. Boxplots for Stations 1 to 5 showing the Chl-a concentrations measured in situ and derived via satellite throughout the study. Note that 
the satellite product shows all available data over the study period (i.e. not only the matchup data).
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To evaluate the performance of the algorithms on the event scale, 
we produced maps of the Chl-a concentration for 25 April 2019 
and 5 March 2020 (Fig. 6). On 25 April 2019, the in situ surface 
Chl-a ranged between 1.8 and 6.5 mg/m3 from Stations 1 to 5, 
respectively, and reached 45.58 mg/m3 at Station 6, while on  
5 March 2020, the surface Chl-a concentrations at Stations 4 and 5 
were approximately 253 mg/m3. These ranges, seasonal variations, 
and spatial distributions are reproduced in the estuarine 
regions of Fig. 6. The Sen2Cor-NDCI combination has been 
used successfully for monitoring eutrophication in African and 
Brazilian reservoirs (Makwinja et al., 2023; Watanabe et al., 2019), 
strengthening the case for its applicability in eutrophic systems, 
such as the Hartenbos (Lemley et al., 2021) and Sundays (Lemley 
et al., 2018) estuaries in South Africa, to name just a few.

CONCLUSIONS

The results of our study indicate that, when used with appropriately 
configured empirical algorithms, the default Level-2A surface 
reflectance from Sentinel-2 can be used for water quality applications 
over mesotrophic and eutrophic estuaries; these findings are 
relevant to monitoring and water quality management of similarly 
sized estuaries globally. Care should be taken when applying this 
approach over oligotrophic water bodies, as the uncertainties and 
bias of the satellite-derived outputs tend to increase at in situ Chl-a 
concentrations < 10 mg/m3. The satellite data used in the study are 

freely available on Cloud-based computational platforms such as 
Google Earth Engine and Digital Earth Africa, facilitating algorithm 
application, spatiotemporal scalability, and time-series analysis 
over the entire Sentinel-2 catalogue from 2017 to the present. The 
methodology in this study has been operationally implemented 
within the OCIMS Water Quality Decision Support Service 
(OCIMS, 2025), facilitating free, routine, and timely distribution 
of mapped Chl-a and derived products, which could be used to 
inform targeted in situ monitoring efforts and complement existing 
water quality monitoring and management by providing a holistic 
overview of a system.
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