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This study evaluates the utility of Sentinel-2 satellite products for monitoring spatial and temporal changes
in chlorophyll a (Chl-a) concentration within an urban, eutrophic estuary. Four atmospheric correction
(AC) processors, namely Acolite, C2RCC, Sen2Cor, and Polymer, are assessed together with eight different
parameterisations of three high-biomass-appropriate empirical Chl-a retrieval algorithms, namely the
2-band, 3-band and normalised difference chlorophyll index (NDCI). The best performance is achieved using
Sen2Cor and the NDCI, which provides an average absolute percentage difference, bias, and correlation
of 173%, 23.8% and 0.853 (p < 0.05), respectively, which improves to 61.7%, 5.4% and 0.843 (p < 0.05),
respectively, for conditions where Chl-a > 10 mg/m?. These results indicate that an appropriately configured
NDCI algorithm applied to the default Sentinel-2 Level 2 product can be used for routine aquatic water
quality monitoring applications for mesotrophic and eutrophic estuaries in the South African context.
Monitoring approaches for estuary water quality are essential, as there is an increase in urban runoff and
untreated inputs from malfunctioning wastewater treatment systems. The results inform water quality
monitoring and management of similar sized estuaries globally. Remote sensing can complement in situ
measurements and provide a holistic overview of a system.

INTRODUCTION

Chlorophyll a (Chl-a) concentration is often used as a proxy for phytoplankton biomass and serves
as an indicator for estuarine eutrophication that occurs as a consequence of anthropogenic nutrient
enrichment (Lemley et al., 2015). In situ monitoring can be expensive, time-consuming, and under-
representative of an entire water body’s geographic extent or temporal changes. Satellite-derived data
products provide a routine, inexpensive means to assess a system’s spatial and temporal scales of
variability. Remote sensing has some known limitations regarding the information it can retrieve,
such as being limited to the surface layers of a water body, being impacted by cloud cover, and only
being capable of retrieving some water quality indicators (IOCCG, 2018); as such it is not meant to
replace in situ measurements, but can offer complementary information that provides a more holistic
overview of a system.

Operational satellite-based products are routinely provided over the coastal marine environment
through the South African National Ocean and Coastal Information Management System (OCIMS;
Krugetal., 2024); however, these moderate spatial resolution products (300 m) do not have appropriately
high spatial resolution to resolve the fine-scale variability within almost all of South Africa’s estuaries.
The Operational Land Imager (OLI) on board Landsat-8 and the Multi-Spectral Instrument (MSI) on
board the Sentinel-2 constellation both offer appropriate spatial resolutions and can provide science-
quality products over coastal and inland waters (Ansper and Alikas, 2018; Franz et al., 2015; Llodra-
Llabrés et al., 2023; Vanhellemont and Ruddick, 2015). While Landsat-8 only has a 16-day revisit
time and 30 m spatial resolution, Sentinel-2 has a 5-day revisit time and 10-60 m spatial resolution,
with the addition of a 705 nm band which is particularly useful for deriving Chl-a concentrations in
inland, eutrophic, or optically complex waters (Moses et al., 2009). Although MSI was designed for
land applications, it has sufficient spectral and radiometric performance to facilitate remote sensing of
smaller aquatic targets (Pahlevan etal., 2017). Many studies have used Sentinel-2 to detect water column
Chl-a concentration (Llodra-Llabrés et al., 2023, and references therein). However, it has not been
widely used to monitor Chl-a in water bodies under 1 km? in size. Bangira et al. (2023) showed that, at
the time of publication, there had been only 8 studies (in English, in peer-reviewed journals accredited
by the South African Department of Higher Education and Training) that used Sentinel-2 data for
case studies estimating water quality indicators in African reservoirs, of which only two represented
estimations of Chl-a. Only two peer-reviewed studies have assessed Sentinel-2 performance for
monitoring Chl-a in South African reservoirs (Obaid et al., 2021; Ndou, 2023). However, none have
considered estuarine environments or different atmospheric correction methods. The current study
aims to assess the performance of a selection of established, freely available atmospheric correction
methods for Sentinel-2, in combination with several published Chl-a algorithms, in a small, eutrophic
estuary. The results will inform the potential and limitations of operational remotely sensed water
quality management in the Swartkops Estuary, and similar environments.
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METHODOLOGY
Sampling site and in situ measurements

The Swartkops Estuary is a predominantly open low-inflow
estuary located on the warm temperate south coast of South
Africa. The estuary is highly urbanised and susceptible to
eutrophic conditions due to excessive nutrient inputs from
adjacent stormwater outlets (Lemley et al., 2022; Mmachaka
et al., 2023) and upstream wastewater treatment works (Lemley
et al., 2023). Similarly, the augmented nature of these nutrient-
rich baseflows has reduced hydrological variability in the middle
to upper reaches of the estuary and facilitated the accumulation
of high-biomass phytoplankton blooms in these areas (Adams
et al., 2025). This study focuses on estuarine spatial survey data
collected from April 2019 to October 2021, covering austral
seasonal variability and HAB events. Surface water samples were
collected at 6 fixed stations, as shown in Fig. 1, and phytoplankton
biomass (measured as Chl-a concentration) was determined
spectrophotometrically according to the methods of Nusch
(1980). The Chl-a concentration ranged from 0.5 to 744.8 mg/m’
during the study period (Lemley et al., 2023). Samples were taken
within the centre of the main channel, approximately 50 and 20 m
from shore at Stations 1-5 and 6, respectively. The optical depth
varied between sampling dates within the range of 0.3 to 2.2 m,
but it was always highest near the mouth and declined upstream.

Satellite data: Matchup and data extraction procedure

Level-1C data for Tile T35HLC from Sentinel-2 MSI were obtained
from the Copernicus Open Access Hub (2023). Only satellite
data from valid water pixels were considered for matchups, with
reflectance > 0, £3 hours from an in situ measurement. Satellite
estimates were extracted over a 3 x 3 pixel box, equivalent to 30
x 30 m, centred over the matchup station, but were only used
if consisting of >4 valid pixels. A glint mask was applied to the
Sen2Cor data by discarding all data where the reflectance at
the 1 610 nm band was greater than 0.05. The 9 different dates
and times that coincided with Sentinel-2 satellite overpasses are
shown in Table 1.

Additional processing and time-series analyses of Sentinel-2
Level-2A data were performed using the Digital Earth Africa
(2024) Analysis Sandbox. The Digital Earth Africa Analysis
Sandbox is a free Cloud-based platform that operates using
a Jupyter Lab environment, allowing access to analysis-ready
datasets covering all of Africa.

Satellite data: atmospheric correction

This study compared the outputs of 4 different atmospheric
correction (AC) procedures. The atmospheric correction for OLI
‘lite’ (Acolite; v.20221114) (Vanhellemont and Ruddick, 2018)
is an image-based AC model for use over inland and coastal
waters. The dark spectrum fitting (DSF) approach (Vanhellemont,
2019) was applied using the default settings without the mask for
negative water-leaving reflectance.

The Case 2 Regional CoastColour (C2RCC; v1.2) per-pixel
artificial neural network inversion (Brockmann et al., 2016) was
applied using the Sentinel Application Platform (SNAP v.9.0)
graph processing tool with default settings.

Table 1. Date and time (UTC) of Sentinel-2 overpasses, which coincided
with in situ matchup data

Number Date Time: Time:
Sentinel-2A Sentinel-2B

1 25 April 2019 07:56:11

2 4 February 2020 08:00:29
3 24 February 2020 07:59:19
4 2 March 2020 07:48:29
5 5 March 2020 07:58:09
6 5 June 2020 07:46:21

7 25 June 2020 07:46:21

8 12 November 2020 07:51:51

9 26 January 2021 07:51:09
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Figure 1. Locations of the 6 sampling stations on the Swartkops Estuary in relation to point sources of nutrient inputs from the Chatty River (CR),
Markman Canal (MMC), and Motherwell Canal (MWC) (adapted from Lemley et al., 2023, Fig. 1)
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The polynomial-based algorithm applied to MERIS (Polymer;
v4.13) (Steinmetz et al., 2011; Steinmetz and Ramon, 2018) is a
physical model that uses a spectral matching method based on a
polynomial to model the spectral reflectance of the atmosphere
and sunglint, a water reflectance model, and utilises all visible
spectral bands in the correction.

Sentinel-2 Correction (Sen2Cor;v.2.11) (Main-Knorn et al., 2017;
Miiller-Wilm et al., 2018) is the default AC for the Sentinel-2
Level-2A land product. The approach requires the presence of
dark, dense vegetation, water or dark soil pixels in an image to
be used as a reference (Kaufman et al., 1997). It operates on the
assumption that the ratios between the bottom of the atmosphere
reflectances at different wavelengths (490 and 665 to 2 190 nm)
are constant.

All outputs were either automatically provided at, or resampled to,
10 m spatial resolution. Where the AC output was not provided
automatically as R, the output reflectance was divided by pi. To
facilitate the operational application of water quality monitoring,
this study focused on efficient and freely available AC algorithms
that do not require human or external input and can be easily
incorporated into computational processing chains; in this study,
all algorithms were operated using Python 3.9.

Chl-a algorithms

The Swartkops Estuary provides an ideal case study to test the
efficacy of Sentinel-2 processing algorithms for monitoring Chl-a
concentrations in small complex estuaries, due to its eutrophic
nature. The severity of eutrophic symptoms in the system is
evidenced by near-year-round accumulations of high-biomass
phytoplankton blooms (>60 mg/m?®) in the high-retention middle
to upper reaches (Adams et al., 2019; Lemley et al., 2023). As such,
we focused on the assessment of algorithms with previous success
in high-biomass optically complex environments operating in
the red, red-edge, and NIR spectral regions. We evaluated the
performance of three of the most well-established Chl-a retrieval
indices for Sentinel-2 (Llodra-Llabrés et al., 2023), including the
2-band (2B) (Gitelson and Kondratyev, 1991) and 3-band (3B)
algorithms (Dall’Olmo et al., 2003), and the normalised difference
chlorophyll index (NDCI) (Mishra and Mishra, 2012).
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As the matchup dataset was relatively small, we assessed the
algorithm performance using existing calibrations from the
literature instead of deriving site-specific coeflicients for each

of the Chl-a algorithms. A list of the calibrations used for Chl-a
estimations, their references, and the range over which they were
parameterized are shown in Table 2 and includes three different
calibrations for the 2-band algorithm, two for the 3-band
algorithm, and three for the NDCIL

Statistical metrics

Standard statistical metrics were used to determine the
performance of each model output from the combination of
the AC and Chl-a algorithm compared to the in situ Chl-a
concentration. The metrics included the number of matchups (N),
coefficient of determination (R?), root-mean-square difference
(RMSD), average absolute percentage difference (RPD), mean
absolute difference (MAD) and the bias, expressed as follows:

RMSD = \/%Z ¥ (log,, Chl,, ~log,,Chl, ... 4)
Chl_,—Chl
RPDzi ;\il‘““’dimxloo (5)
N Chl,_..,
MAD = % xil log,,Chl,,,—log,,Chl ., (6)
Bias = %Z A (logw Chl_ ,—log,, Chlmm) %100 (7)

where: Chl,, is the algorithm-derived Chl-a output and Chl,,;
is the in situ Chl-a. Since the distribution of Chl-a in the aquatic
environment is log-normal (Campbell, 1995), the estimation of
RMSD, MAD, bias and R* were performed on logarithmically
transformed data. The significance of the correlation between
in situ and satellite-derived Chl-a was evaluated using a Pearson
correlation coeflicient and a 2-tailed ¢-test. The null hypothesis
(H,: no correlation) was rejected if p < 0.05. Calculations were
performed in Python (SciPy v1.10.1; Virtanen et al., 2020)
using the pearsonr function, which accounts for sample size and
correlation strength.

The performance of the combined AC and Chl-a algorithms was
evaluated by Ogashawara et al. (2021), using a quantitative scoring
system to rank their performance relative to the average statistical
performance. Points were assigned based on standard deviation.
For the RMSD, MAD, RPD and bias statistics, a score of 2, 1, or 0
was awarded where the algorithm statistic was within 1, 2 or more
standard deviations of zero, respectively. For R?, where the desired
result was as close to 1 as possible, a score of 2, 1 or 0 was awarded
when the algorithm statistic was within 1, 2 or more standard
deviations of 1, respectively. For the N statistics, a score of 2, 1,
or 0 was awarded if the total was within 1, 2 or more standard
deviations of the maximum number of matchups, respectively.

Table 2. The algorithms used for Chl-a concentration retrieval from Sentinel-2 MSI data, showing the algorithm acronym, the equation with
coefficients, the reference publication, and the Chl-a range over which the parameterisation was developed

Algorithm Equation Reference Chl-a range (mg/m?3)
GL2B (35.745(2B) — 19.295)"12# Gilerson et al. (2010) 0-80

GR2B 25.28(2B)* + 14.85(2B) + 15.18 Gurlin et al. (2011) 2.3-200.8
MS2B 61.324(2B) — 37.94 Moses et al. (2009) 0-70

GR3B 315.50(3B)? + 215.95(3B) + 25.66 Gurlin et al. (2011) 2.3-200.8
MS3B 232.329(3B) + 23.174 Moses et al. (2009) 0-70

MIND 314.97(NCDI)? + 236.5(NCDI) + 42.197 Mishra and Mishra (2012) 0-30

M2ND 194.325(NCDI)? + 86.115(NCDI) + 14.039 Mishra and Mishra (2012) 0-30

MCND 762.6(NCDI)? + 207.4(NCDI) + 16.4 Maciel et al. (2023) 0.4-180
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Figure 2. A diagram of satellite data processing and algorithm application

A total of 12 points could be scored, where the highest score
represents the best-performing combination of algorithms. A
flow diagram outlining all methods from Sentinel-2 download to
final algorithm selection is provided in Fig. 2.

RESULTS AND DISCUSSION
AC and Chl-a algorithm performance

Although the current study is limited in its ability to comment
on AC performance due to the lack of in situ radiometric
measurements, this limitation is shared with many parts of
the world. It should not be a prohibitive factor in evaluating
the application of remote sensing data in under-represented
areas. Several studies have even suggested that detecting Chl-a
concentration in more eutrophic conditions is less affected by the
selected AC product (Grendaité and Stonevic¢ius, 2022; Matthews
and Odermatt, 2015). As in Grendaité and Stonevicius (2022),
the current study aims to comment on the performance of the
combined output of the AC and the existing Chl-a algorithms in
terms of applicability for water quality monitoring. Chegoonian
et al. (2023) found that a combined assessment provided useful
information regarding the desired application, e.g., improved
accuracy or temporal stability. Pahlevan et al. (2021) also noted
that globally there is no single solution for inland and coastal
waters. AC processors should be selected according to the
scientific objective or application.

The remote sensing reflectance (R,) outputs of the four AC
schemes for several matchup stations are provided in Fig. 3,
whereas the statistical performance of each of the 32 AC and
Chl-a algorithm combinations are provided in Table 3. Overall,
the C2RCC has a relatively flat spectral shape and slight variation
in peaks and troughs, whereas only the magnitude of the entire
reflectance spectrum changes between dates and stations.
All Chl-a algorithms applied resulted in a generally negative
bias, elevated RMSD (>0.812), low R* (<0.1) and no significant
correlations (p > 0.05) (Table 3). Ansper and Alikas (2018) found
that the C2RCC did not show good sensitivity in reproducing the
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absorption signal of Chl-a at 665 nm, which may explain the flat
spectral shape and poor statistical performance for the C2RCC
compared to the other AC algorithms.

Overall, Acolite showed the lowest scores and the least valid
retrievals, and outputs were not available for all the matchups,
possibly due to stringent default non-water masking settings that
remove top-of-atmosphere data when the radiance at 1 600 nm
is greater than 0.0215. Where Acolite reflectance is produced, it
generally has a spectral shape and magnitude like that of Sen2Cor
and is elevated in the visible range compared to C2RCC and
Polymer; Sent et al. (2021) had similar findings for the Sado
Estuary in Portugal where Acolite also over-estimated the R
compared to C2RCC and Polymer. Pereira-Sandoval et al. (2019)
found that the performance of Sen2Cor and Acolite, in terms of
statistical matchups with in situ reflectance, showed a relatively
consistent mean absolute error and positive bias across the
spectral range. However, that statistical performance improved
over more eutrophic inland water types.

Although the magnitude for Sen2Cor is consistently elevated
compared to the other ACs, it has a very similar spectral shape to
that of Polymer in the red to near-infrared spectral range where
in situ Chl-a was >30 mg/m’® (Fig. 3b, ¢, d and f). In these cases
the 705 nm reflectance peak, an important feature for Chl-a
estimation in optically complex and eutrophic waters, is evident
for both Sen2Cor and Polymer. Warren et al. (2019) further
found that outputs from Sen2Cor had a lower spectral angle (i.e.,
more similar spectral shape to in situ reflectance) than Polymer
over European inland waters. Studies have shown that although
Sen2Cor performs poorly in coastal and marine waters, it tends to
provide results comparable to other AC methods in inland waters
(Warren et al., 2019; Grendaité and Stonevicius, 2022).

The best three combinations of AC-Chl algorithms, each with a
score of 7, resulted from a combination of the NDCI algorithm
with either Sen2Cor using the coeflicients of Maciel et al. (2023)
(MCND from Table 2) or with Sen2Cor and Polymer using the
coeflicients of Mishra and Mishra (2012) (M2ND from Table 2).
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Table 3. The statistical performance of each AC and Chl-a algorithm (Chl-a Algo) combination, including the root-mean-squared-difference
(RMSD), mean absolute difference (MAD), average absolute percent difference (RPD), bias, R?, and number of positive modelled results (N) used
for comparing modelled Chl-a (from algorithms applied to satellite reflectance) to in situ Chl-a, and the performance score. The three best-
performing algorithms are indicated with *. Results that did not have a significant correlation (p > 0.05) are shown in italics.

AC Chl-a RMSD MAD RPD (%) Bias (%) R? p-value N Score
Algo
*Sen2Cor MCND 0.448 0.356 173.3 23.8 0.728 3.01x10°® 26 7
Polymer MCND 0.61 0.409 290 12.4 0.545 2.79x 1077 36 6
ACOLITE MCND 0.477 0.377 211.8 35 0.65 0.0016 12 4
C2RCC MCND 1.036 0.841 100.6 -65.9 0.08 0.1060 34 5
Sen2Cor MIND 0.697 0.574 469.8 49.4 0.757 7.84x107° 26 4
Polymer MIND 0.707 0.509 477.5 20.3 0.436 1.19x 10°° 36 4
ACOLITE MIND 0.847 0.774 698.8 774 0.67 0.0011 12 1
C2RCC MIND 0.948 0.793 386.7 -3.7 0.095 0.0759 34 5
*Sen2Cor M2ND 0.468 0.394 1379 5.1 0.781 2.14x107° 26 7
*Polymer M2ND 0.564 0.399 171.7 -8.8 0.603 2.59x 1078 36 7
ACOLITE M2ND 0.455 0.388 185.6 317 0.709 0.0006 12 5
C2RCC M2ND 0.969 0.778 136.5 -46.1 0.015 0.4932 34 5
Sen2Cor GL2B 0.548 0.463 240.6 231 0.767 4.72x107° 26 6
Polymer GL2B 0.618 0.44 259.5 4.2 0.511 9.86x 107 36 6
ACOLITE GL2B 0.63 0.548 355 523 0.693 0.0008 12 3
C2RCC GL2B 0.957 0.777 228.5 -25 0.094 0.0772 34 5
Sen2Cor GR2B 0.787 0.646 645.8 55.7 0.758 743 x107° 26 4
Polymer GR2B 0.826 0.7 787.5 56.4 0.526 5.67 x 1077 36 4
ACOLITE GR2B 0.999 0.91 1069.6 91.1 0.755 0.0002 12 2
C2RCC GR2B 0.892 0.783 715.8 28.9 0.045 0.2291 34 4
Sen2Cor MS2B 0.546 0.462 239.6 23 0.751 1.05x 1078 26 6
Polymer MS2B 0.607 0.434 261 24 0.524 1.30x10°¢ 34 6
ACOLITE MS2B 0.621 0.537 346.4 51.4 0.663 0.0013 12 3
C2RCC MS2B 0.812 0.683 217 —15.1 0.003 0.7781 32 6
Sen2Cor GR3B 0.583 0.481 308.9 42.7 0.721 4.15x 1078 26 5
Polymer GR3B 0.611 0.461 437 333 0.691 6.16 x 1071° 35 5
ACOLITE GR3B 0.681 0.603 4121 50.5 0.516 0.008476 12 3
C2RCC GR3B 0.887 0.751 252.5 -17.6 0.067 0.140414 34 5
Sen2Cor MS3B 0.539 0.425 256.2 33.6 0.703 1.68x 107 25 5
Polymer MS3B 0.511 0.34 348.5 16.8 0.685 9.14x10°° 31 6
ACOLITE MS3B 0.619 0.499 357 34.8 0.479 0.0183 n 3
C2RCC MS3B 0.831 0.687 194.1 -20.7 0 0.9880 32 6

Chawla et al. (2020) noted that the NDCI is superior to the 2B and
3B algorithms in turbid productive waters, while Makwinja et al.
(2023) found thata quadratic function for NDCI, applied to Sen2Cor
reflectance, produced satisfactory performance for mapping
Chl-a of Lake Malombe, Malawi. To choose the best-performing
combination of these three, the scatter plots and statistics over
the entire in situ Chl-a range, as well as over Chl-a measurements
exceeding 10 mg/m?, are shown in Fig. 4. Although the combination
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of Sen2Cor and M2ND produced a smaller RPD and bias than the
other combinations throughout the entire range of in situ Chl-a
concentrations, the combination of Sen2Cor and MCND was
closer to the 1:1 line when the in situ Chl-a concentrations were
elevated, with a more negligible bias, RMSD, and MAD than the
other two combinations. This makes it potentially more appropriate
to monitor eutrophication. The Sen2Cor-MCND combination was
selected for all subsequent calculations.
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Regarding uncertainties for Chl-a retrievals

Several factors might contribute to the increase in the uncertainty
of satellite-derived products. Although in situ measurements are
often considered to represent the ‘truth standard methods for the
determination of Chl-a, such as the fluorometric method, can
have uncertainties of over 30% (Trees et al., 1985). There is also a
spatial mismatch between the use of point-based measurements to
represent an entire basin of a water body compared to the depth and
spatial integration approach of satellite measurements (Papenfus
et al., 2020). While the time window between field sampling and
satellite data collection could affect the uncertainty, it should not
be an issue in this study, as + 3h aligns with recommendations
for river systems (Kuhn et al., 2019) and is at the lower end of
most matchup windows (Llodra-Llabrés et al., 2023), which can
range up to 12 days (Li et al., 2021). Uncertainties are expected
to be greater in inland waters compared to coastal and oceanic
environments (Pahlevan et al., 2021). For example, uncertainties
ranged from approximately 10-1 400% for 70 AC and Chl-a
algorithm combinations when applied to Sentinel-2 MSI data
over Lithuanian lakes (Grendaité and Stonevicius, 2022).

Product uncertainty is also elevated in areas affected by adjacency
effects (AE) (Warren et al., 2021), when the relatively greater
reflectance from neighbouring land pixels influences those of
the darker water pixels, which becomes apparent at wavelengths
> 700 nm; however, studies found that AE may have a more minor
impact when aquatic Chl-a concentrations are relatively high and
if the water target is surrounded by green vegetation (Bulgarelli
and Zibordi, 2018; Ruescas et al.,, 2016). In the current study,
Sen2Cor and Acolite overestimated in the longer wavelengths
compared to C2RCC and Polymer; Pereira-Sandoval et al. (2019)
found that the reflectance at 740 and 783 nm for Sen2Cor and
Acolite was higher than the in situ values, which they attributed to
AE. It may be concluded that under increased AE conditions, the
use of the 3-band algorithm (which includes longer wavelengths)
might result in poorer performance and greater variations in
performance between ACs.

This study supports the use of the NDCI coupled with Sen2Cor
for monitoring eutrophication in the Swartkops Estuary - a
methodology potentially transferable to similarly eutrophic
estuaries surrounded by vegetation. It should be noted that, due
to the dependence of Sen2Cor on the presence of dark vegetation

for its correction, its accuracy could decrease in regions with less
vegetation (Bui et al., 2022; Ruescas et al., 2016). Care should be
taken in areas where the bottom of the estuary is visible, as these
are likely to lead to an overestimation of satellite-derived Chl-a
concentration. However, this is more likely to have an effect in the
lower reaches of the estuary, where the water clarity is increased. The
proposed algorithm combination has also shown poor performance
at lower Chl-a concentration ranges. Future studies could consider
using algorithm merging (e.g., Smith et al., 2018; Schaeffer et al.,
2022) or applying an optical water-type approach, where the
per-pixel spectral shape is considered and used to determine
the most appropriate Chl-a algorithm or AC-Chl algorithm
combination (e.g., Pahlevan et al, 2021; Soomets et al., 2020)
to reduce uncertainties.

Implications for operational application and
management opportunities

While high accuracy may be required for scientific studies, it is
acknowledged that, typically, operational management could
benefit from more qualitative metrics. Even with high uncertainty,
concentration changes can be detected if the product is derived
using a consistent methodology (Schaeffer et al., 2013). Several
studies have pointed out the value of satellite-derived information
even in the absence of accurate regressions between in situ
and satellite data, particularly in terms of harmful algal bloom
advisories, where a simple absence or presence information is
desired (Schaeffer et al., 2018); similarly, categorical classification
into trophic levels (Papenfus et al., 2020) can be helpful for water
quality management purposes.

The selected AC-Chl algorithm combination was applied to a
time series of Sentinel-2 reflectance on the Digital Earth Africa
platform. Satellite-derived Chl-a concentrations were extracted at
each station between April 2019 and October 2021, corresponding
to the period represented by the in situ Chl-a dataset from Lemley
et al. (2023). Figure 5 compares the in situ and satellite-derived
concentrations for each station. The distributions are remarkably
similar in terms of median values and concentration ranges,
considering the varied temporal scales represented by the two
datasets. Satellite data is rarely available for Station 6, as water
hyacinth (Pontederia crassipes) frequently obscures the surface
(Lakane et al., 2024). However, the spatial variations over most of
the estuary are routinely captured by satellite data.
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Figure 5. Boxplots for Stations 1 to 5 showing the Chl-a concentrations measured in situ and derived via satellite throughout the study. Note that
the satellite product shows all available data over the study period (i.e. not only the matchup data).
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Figure 6. Examples of the Chl-a maps produced by applying the MCND (Maciel et al., 2023) to Standard L2 (Sen2Cor) Sentinel-2 MSI images. The
25 April 2019 and 5 March 2020 images correspond with generally low and elevated in situ Chl-a concentration ranges, respectively.

To evaluate the performance of the algorithms on the event scale,
we produced maps of the Chl-a concentration for 25 April 2019
and 5 March 2020 (Fig. 6). On 25 April 2019, the in situ surface
Chl-a ranged between 1.8 and 6.5 mg/m® from Stations 1 to 5,
respectively, and reached 45.58 mg/m’ at Station 6, while on
5 March 2020, the surface Chl-a concentrations at Stations 4 and 5
were approximately 253 mg/m’. These ranges, seasonal variations,
and spatial distributions are reproduced in the estuarine
regions of Fig. 6. The Sen2Cor-NDCI combination has been
used successfully for monitoring eutrophication in African and
Brazilian reservoirs (Makwinja et al., 2023; Watanabe et al., 2019),
strengthening the case for its applicability in eutrophic systems,
such as the Hartenbos (Lemley et al., 2021) and Sundays (Lemley
et al,, 2018) estuaries in South Africa, to name just a few.

CONCLUSIONS

The results of our study indicate that, when used with appropriately
configured empirical algorithms, the default Level-2A surface
reflectance from Sentinel-2 can be used for water quality applications
over mesotrophic and eutrophic estuaries; these findings are
relevant to monitoring and water quality management of similarly
sized estuaries globally. Care should be taken when applying this
approach over oligotrophic water bodies, as the uncertainties and
bias of the satellite-derived outputs tend to increase at in situ Chl-a
concentrations < 10 mg/m?’. The satellite data used in the study are
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freely available on Cloud-based computational platforms such as
Google Earth Engine and Digital Earth Africa, facilitating algorithm
application, spatiotemporal scalability, and time-series analysis
over the entire Sentinel-2 catalogue from 2017 to the present. The
methodology in this study has been operationally implemented
within the OCIMS Water Quality Decision Support Service
(OCIMS, 2025), facilitating free, routine, and timely distribution
of mapped Chl-a and derived products, which could be used to
inform targeted in situ monitoring efforts and complement existing
water quality monitoring and management by providing a holistic
overview of a system.
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