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Background: Artificial intelligence (AI) transformed healthcare worldwide and has the
potential to address challenges faced in the South African healthcare sector, such as
limited public institutional capacity, staff shortages, and variability in skills levels that
exacerbate the demand on the healthcare system that can lead to compromised care and
patient safety.

Aim: This study aimed to describe how Al, especially machine learning is used in
healthcare in South Africa over the last 5 years.

Method: The Joanna Briggs Institute (JBI) methodology for scoping reviews was used.
Peer-reviewed articles in English, which were published from 2020 to date were sourced
and reviewed using the Population, Concept, Context (PCC) framework.

Results: A total of 35 articles were selected. The results showed a focus on conventional
machine learning, a health focus on HIV and/or tuberculosis (TB) and cancer, and a lack
of big data in fields other than cancer.

Conclusion: There has been an increase in the use of machine learning in the analysis of
health data, but access to big data appears to be a challenge.

Contribution: There is a need to have access to high-quality big data, inclusive policies
that promote access to the benefits of using machine learning in healthcare, and Al literacy
in the health sector to understand and address ethical implications.

Keywords: artificial intelligence; deep learning; health sector; machine learning; South Africa.

Introduction

South Africa has a quadruple burden of diseases, which severely impacts the delivery of
healthcare (De Villiers 2021; Louw et al. 2023; Okeibunor et al. 2023). Healthcare is
often inaccessible to people living in remote areas (De Villiers 2021; Louw et al. 2023), and
most people depend on limited public resources. Limited public institutional capacity,
staff shortages, high staff turnover rates, and variability in skills levels exacerbate
the demand on the healthcare system and can lead to compromised care and patient safety
(De Villiers 2021).

Artificial intelligence (AI) has been posited to address some of these challenges. Artificial
intelligence refers to the imitation of human intelligence by automated processes (Kuziemsky
et al. 2019) such as the use of machine learning (i.e., training machines to learn from datasets
and performs tasks; Shandhi & Dunn 2022) and the use of generative Al (i.e., the use of large
language models to do a range of tasks). Artificial intelligence has been applied in healthcare
to assist in the diagnoses of diseases, analyse healthcare plans, monitor health, develop
personalised treatment plans, and perform surgical treatment through robotics (Amisha et al.
2019). Artificial intelligence shows potential for personalised medicine as individual risk can
be predicted from patient data that enables the development of individualised treatment
plans, which can enhance patient outcomes (Amisha et al. 2019; Kuziemsky et al. 2019;
Shandhi & Dunn 2022). Artificial intelligence can also streamline healthcare delivery and
provide more efficient healthcare, for example, online appointment scheduling, online check-
ins, digitalisation of medical records, and automatic reminders for follow-up appointments
(Amisha et al. 2019).

Within the field of AI, machine learning (ML) has been used in predictive analytics where
predictive models are formed by combining machine learning and traditional statistics and are
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used for prognosis, optimising healthcare delivery, and
individualised treatment (Manlhiot 2018). Machine learning
includes conventional machine learning (which focuses on
developing algorithms and models that permit computers to
learn from information); deep learning (which uses neural
networks to simulate the human brain to learn from
unstructured data, such as images and speech recognition);
and ensemble learning (which combines multiple models to
improve accuracy and robustness), and can be applied to
both conventional and deep learning models (Sharifani &
Amini 2023). Machine learning models are useful to
determine which patients are likely to benefit from a
particular treatment based on certain characteristics (e.g.,
genetically informed therapeutic planning) (Dong et al. 2015;
Shandhi & Dunn 2022) and to identify biomarkers that can
assist in early detection of disease, prediction of treatment
response, and provide indicators of the progression of
diseases (Shandhi & Dunn 2022).

Review question

The following is the review question: “What articles on Al used
in healthcare in South Africa were published in the last 5 years?’
The objectives were to determine: (1) what the status of using
Al in the South African health system is, and (2) what
applications of Al-based innovations are currently in use in
the health sector in South Africa. As no generative Al articles
were found, the review focused on machine learning.

Materials and methods
Research design

This scoping review followed the guidelines of the Joanna
Briggs Institute (JBI) for evidence-synthesis (Aromataris et al.
2024; Peters et al. 2020), and the reporting is done in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for scoping reviews
(PRISMA-ScR) checklist (Tricco et al. 2018).

Protocol and registration

The review protocol was registered in Open Science
Framework (OSF) prior to conducting the study, and is
available at https://doi.org/10.17605/OSF.I0/25MU4

Eligibility criteria

Given the rate of development of technology, this scoping
review collected and analysed peer-reviewed full-text
empirical research articles written in English from 2020 to
2024 to ensure that only the latest research articles pertaining
to the use of Al in healthcare settings in South Africa are
included. All study methods were considered, except non-
research studies such as reviews and opinion article. Using
the PCC (population, concept, context) framework (Peters
et al. 2020), inclusion and exclusion criteria were formulated
(Table 1). The common types of machine learning are defined
in Appendix 2. Studies that did not comply with the inclusion
criteria were excluded.
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TABLE 1: Inclusion and exclusion criteria based on participants, context, and
concept.

Terms Inclusion Exclusion

South African patients identified
as part of an international
multi-country study

Participants Studies where all patients or
records are in South African
health care setting

Context South African health service
(e.g., hospitals, clinics,
communities, or research
settings, medical institutions)

Concept Conventional machine learning, Standard statistical analysis,
deep learning and ensemble generative Al
learning

Al, artificial intelligence.

Search strategy, selection of sources, and data
extraction

We used the key terms of Al, machine learning and deep
learning synonyms, South Africa and health sector
(see Appendix 1, Table 1-A1 for detailed search strategy),
to conduct searches on PubMed, Academic search
Complete, and Google Scholar, to retrieve the most
relevant data. Descriptors such as titles, abstracts, and full
texts of relevant and suitable articles on the topic were
used to conduct the search. Relevant studies from the
reference lists of retrieved articles were hand-searched
from Google Scholar database (‘snowballing’).

Following the literature search, all identified sources
were imported to the systematic review management
software, namely Covidence (2023), which guided the
screening process comprising the screening of titles and
abstracts, review of full texts, and data extraction. Two
reviewers (the third and fourth authors) screened the
sources independently for eligibility. Disagreements
between the reviewers at each stage of the selection
process were resolved through online discussion by the
reviewers and checked by the first author. The PRISMA-
ScR flowchart was used to illustrate the search process
(the removal of duplicates, the number of qualifying
sources included for analysis, and the reason for
excluding non-eligible sources). Using a data extraction
tool in Excel, data were extracted by the fourth author,
and checked by the first author. There was no formal
quality assessment of the sources included in the review
because a formal assessment of the methodological
quality is usually not required for scoping reviews (Peters
et al. 2020).

Data analysis

For scoping reviews, frequency counts for the required
fields of data are sufficient, although a more in-depth
analysis can be appropriate (Peters et al. 2020). Frequency
counts and thematic analysis Braun and Clarke (2006)
were performed by the first author. Themes of health area,
source of data and type of machine learning were analysed.

Ethical considerations

This article followed all ethical standards for research
without direct contact with human or animal subjects.
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Review findings
Selection of sources of evidence

A total of 810 records were retrieved for the period from
2020 to 2024, with one current unpublished study included.
Thirty-five articles (n = 35) were selected for final analysis
(Figure 1). Of the 35 articles, 9 (25.7%) were published
between 2020 and 2021, and 26 (74.3%) between 2022 and
2025 (Table 2).

A summary of the studies included in the review

Three articles were on the same study focusing on
developing a machine learning algorithm to predict
mortality in critically ill children (Pienaar et al. 2022a,
2022b, 2023). Most data were primary data (n = 14, 42.4%)
or from established data registries such as the South
African Cancer Registry, the National Health Laboratory
Services (NHLS) and the World Data registry of COVID-19
cases (Table 2).

Characteristics of the studies

The reviewed studies used a range of conventional machine
learning (50%), deep learning (20.2%) and ensemble learning
techniques (29.8%) focusing on different health areas
(Table 3). Two health areas had the highest number of
studies: cancer and COVID-19 (n =7, 21.2% each) (Table 2).
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FIGURE 1: PRISMA-ScR flowchart illustrating the search process.
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All the studies on cancer used data from the South African
Cancer Registry. Separate studies were conducted by groups
with overlapping authors who work in the field, with three
studies by Achilonu et al. (2021a, 2021b, 2022) and two
studies by Olago et al. (2020, 2023) (Table 3). The purpose of
using conventional and ensemble machine learning ranged
from classifying risk for length of stay (Achilonu et al.
2021a), generating histopathology reports (Olago et al. 2020)
and cancer diagnoses related to human immunodeficiency
virus (HIV) diagnoses (Olago et al. 2023) and processing
free text to classifying benign versus malignant cancer
(Achilonu et al. 2021b, 2022). Deep learning was used to
generate malignant urine cytology images (McAlpine et al.
2022), and the prediction of the Gleason Grade group in
prostate cancer (Mokoatle et al. 2022).

Studies on COVID-19 were also common, because of the
recent pandemic (Table 3). Data sets were obtained from the
National Institute of Communicable Diseases (NICD)
(Lieberman et al. 2023), the National Health Laboratory
Service (NHLS) (Stevenson et al. 2021) and Our World in
Data (Akinola et al. 2023), a publicly available repository on
COVID-19 daily case counts in South Africa. The rest of the
studies used either primary data (Okonkwo, Amusa &
Twinomurinzi 2022), hospital records (Chimbunde et al.
2023) or data from the Hospital and Emergency Centre
Tracking Information System application (HECTIS?), which
is the emergency department electronic register in the
Western Cape (Fuller et al. 2023). Deep learning and machine
learning were used to predict ICU mortality (Chimbunde
et al. 2023) and forecast new waves of COVID-19 (Akinola
et al. 2023; Stevenson et al. 2021), and conventional and
ensemble machine learning were used to confirm vaccination
status (Okonkwo et al. 2022), classify hot spots (Lieberman
et al. 2023) and predict adverse outcomes (Fuller et al. 2023).

The next most common health area targeted with machine
learning was HIV and/or tuberculosis (TB) (n = 8, 24.2%)
(Table 2). Six of the eight studies used primary data collected
from observational studies (Eken et al. 2020; Majam et al.
2023; Maskew et al. 2022; Onywera et al. 2020; Pahar et al.
2021; Turbé et al. 2021), two studies used hospital records of
patients receiving anti-retroviral therapy (ART) treatment

TABLE 2: A summary of articles (N = 35).

Variables Frequency

n %
Year
2020-2021 9 25.7
2022-2024 26 743
Health area
HIV or TB 8 24.2
Cancer 7 21.2
COVID-19 7 21.2
Other 11 333
Data
Primary data 14 42.4
Registry 11 333
Other 8 24.2

COVID-19, coronavirus disease 2019; HIV, human immunodeficiency virus; TB, tuberculosis.
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(Esra et al. 2023a, 2023b), and one study used data on culture
positive isolates confirmed by the National Health Laboratory
Services (NHLS) (Achilonu et al. 2021a) (Table 3). The
purpose of using machine learning ranged from using deep
learning to develop movement tracking systems (Eken et al.
2020), classifications of TB-related versus other coughs,
assessing the impact of HIV on Human papillomavirus
(HPV) (Onywera et al. 2020) to the classification of rapid HIV
tests (Turbé et al. 2021). Conventional and ensemble machine
learning were used to classify and predict poor outcomes
from HIV such as interruptions to ART treatment (Esra et al.
2023a, 2023b), attendance at clinic visit and viral load
(Maskew et al. 2022), HIV risk (Majam et al. 2023), and drug
resistance (Sibandze et al. 2020).

The rest of the studies (n = 9, 27.2%) focused on a range of
different health focus areas (Table 3). Three studies conducted
by the same group of authors, specifically focused on
paediatric critical illnesses, using primary data and deep
learning to develop a model to predict mortality in paediatric
ICUs (Pienaar et al. 2022a), followed by a comparison of
different models using conventional and ensemble machine
learning (Pienaar et al. 2022b). Thereafter, a study was
performed by experts to describe the domain knowledge for a
machine learning model for paediatric illness (Pienaar et al.
2023). Deep learning was also used to screen digital otoscopic
images (44) and a screening tool for severe acute malnutrition
(Nel et al. 2022) (Table 3). Conventional and ensemble machine
learning were further used to predict mortality in heart failure
(Mpanya et al. 2023), risk of readmission in surgical and
trauma emergency departments (Tokac et al. 2025a, 2025b),
and to identify risk factors for mortality in laparotomy surgery
(Smith et al. 2022), gestational diabetes (Kolozali et al. 2024)
and provide malaria warnings (Martineau et al. 2022). In one
paper, a combination of deep learning, ensemble and
conventional learning was used to develop the most effective
model for triage of critically ill children presenting to a tertiary
hospital (Pienaar et al., 2022b).

Lastly, a range of Al methods used in the reviewed studies
fall into three main types based on their characteristics and
applications (Table 1-A2). Conventional machine learning
was most often used (22, 66.7%) among the articles, usually
combined with ensemble learning (12/22) or deep learning
(2/22) or in a combination of all three (4/22) (Table 3).
Conventional machine learning relies on traditional statistical
and mathematical approaches and is used for tasks such as
classification and regression, often in simpler datasets and
problems where feature extraction is typically performed
manually. Ensemble boosting was used in 18 (54.5%) articles,
often in combination with deep or conventional machine
learning (14/18) (Table 3). Ensemble learning combines
multiple models, such as decision trees, to enhance prediction
accuracy, robustness, and generalisability, which are useful
in managing diverse and imbalanced datasets. Lastly, deep
learning, which is characterised by its reliance on neural
networks with multiple layers, designed to process large and
complex datasets, was used in 14 articles (42.4), eight times
on its own (Table 3).
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Discussion

South Africa has a history of disparity in access to
technology and education, presenting challenges in
adopting the use of artificial intelligence in the health
sector. Digital transformation is growing at a slow rate in
the private health sector, and more so in public sector,
compared to other industries such as banking and
insurance (Willie 2020). This review reflects the slow
uptake of machine learning, similar to a review on Al use
in the health sector in Tanzania (Sukums et al. 2023), but
does show some increasing emergence of machine learning
to predict different health outcomes in South Africa. The
high number of studies on HIV and/or TB is possibly
linked to HIV and/or TB being one of the key burden of
diseases (De Villiers 2021; Louw et al. 2023) and those
studies reported issues of health-seeking behaviour and
compliance with treatment regimens (Stangl et al. 2019).
Similarly, the recent COVID-19 pandemic, with its
widespread impact, the national requirement of reporting
COVID-19 cases for surveillance, and the need for rigorous
clinical and societal responses (Van Der Schaar et al. 2021),
is also reflected in the studies examined in this review.

There has been numerous reports on the importance of
integrating machine learning techniques into local and
national healthcare systems to improve health response and
health outcomes (Van Der Schaar et al. 2021). However,
access to big data routinely collected in South Africa is
limited (Tokac et al. 2025a, 2025b), and the review
demonstrates the challenges of integrating machine learning
into data in the health sector. Firstly, similar to another
scoping report (Sukums et al. 2023), the high usage of
primary data highlights the challenges of limited access to
or availability of large volumes of high-quality data for
training and validating Al-based models. Having the
availability of the national registries of the NICD and NHLS
enables researchers to access these large data sets to apply
deep learning to classify images and results and apply
conventional and ensemble machine learning.

Secondly, there is lack of data analysis skills in the health
sector (Ngiam & Khor 2019). This is similar to reports of
challenges related to human, infrastructure, and financial
resources for the design, development, and implementation
of Al-based solutions in the health sector as reported in
Tanzania (Sukums et al. 2023). This is also crucial, considering
ethical and medico-legal implications, health workers’
understanding of machine learning tools, and data privacy
and security (Ngiam & Khor 2019).

Implications and recommendations

Overcoming challenges in South Africa requires access to
high quality big data, inclusive policies that promote
widespread access to the benefits of using Al in healthcare,
and Al literacy in the health sector to understand and address
ethical and medico-legal implications.
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Strengths and limitations

A strength of this scoping review is its focus on machine
learning; however, a limitation is that there is a possibility
that important articles might have been missed because of
a wide range of machine learning techniques.

Conclusion

In South Africa, there has been an increase in the use of
machine learning in the analysis of health data, but access to
big data appears to be a challenge, and disparities have had
an impact on the adoption of Al technologies in the healthcare
sector.
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Appendices

Appendix 1

TABLE 1-A1l: Search terms used to retrieve sources.

PubMed

Academic Search
Complete

Google Scholar

(((((South AfricalMeSH Terms]) OR (South Africa[Title/Abstract]) OR (South Africa)[Text Word])) AND
((((((Health) OR (Health symptoms[MeSH Terms])) OR (diseases diagnosis[Title/Abstract])) OR

(health sector[Title/Abstract])) OR (Health care sector[Title/Abstract])) OR (Disease[Text Word]))) AND
(

(

(CCCCCCCC(((Artificial intelligence [MeSH Terms]) OR (Al[Title/Abstract])) OR (Artificial intelligence[Title/Abstract])) OR (Machine Intelligence[Title/Abstract])) OR
Machine Intelligence)) OR (Computer Reasoning[Title/Abstract])) OR (Deep learning[Title/Abstract])) OR (Machine learning[Title/Abstract])) OR

(Artificial intelligence based assessment[Title/Abstract])) OR (Artificial intelligence based assessment[Title/Abstract])) OR (Artificial intelligence-based
assessment[Title/Abstract])) OR (Artificial intelligence-based innovations[Title/Abstract])) OR (Artificial intelligence based innovations [Title/Abstract]))

((‘health’/exp OR ‘health’) OR ‘health symptoms’ OR ‘diseases diagnosis’ OR ‘health sector’ OR ‘health care sector’) AND ((‘artificial intelligence’/exp OR
‘artificial intelligence’) OR ‘machine intelligence’ OR (‘automated reasoning’/exp OR ‘automated reasoning’) OR (‘deep learning’/exp OR ‘deep learning’) OR
‘machine learning’ OR ‘artificial intelligence based assessment’ OR ‘artificial intelligence-based innovations’) AND (South Africa)

(‘health symptoms’ OR ‘diseases diagnosis’ OR ‘health sector’ OR ‘health care sector’ AND ‘artificial intelligence’ OR ‘machine intelligence’ OR ‘automated
reasoning’ OR ‘automated reasoning’ OR ‘deep learning’) AND (South Africa)

https://www.hsag.co.za . Open Access


https://www.hsag.co.za�

Appendix 2

TABLE 1-A2: Detailed categorisation of machine learning methods by type.
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ML methods Explanation of acronyms ML types
SVM, NB, GLM, SVM (Support Vector Machine), NB (Naive Bayes), GLM (Generalised Linear Model), Conventional ML (SVM, NB, GLM, C5.0),
C5.0, ETC, RF, C5.0 (Decision Tree Model): Conventional ML. Ensemble ML (ETC, RF), Deep ML (ANN).
ANN ETC: Extra Trees Classifier- RF: Ensemble ML (decision tree-based).
ANN: Deep ML (neural networks).
GPR Gaussian Process Regression: A probabilistic regression approach. Conventional ML
GAN Generative Adversarial Network: Deep learning for synthetic data generation. Deep ML
XGBoost, Light XGBoost (Extreme Gradient Boosting), Ligh GBM (Ligh Gradient Boosting Machine), Ensemble ML (XGBoost),
GBM, GBC, GBC (Gradient Boosting Classifier): Ensemble ML. Deep ML (LSTM, RNN).
LSTM, RNN LSTM, RNN (Long Short-Term Memory, Recurrent Neural Network): Deep ML.
KNN, SGD, DT, KNN (K-Nearest Neighbours), SGD (Stochastic Gradient Descent), DT (Decision Tree): Conventional ML (KNN, SGD, DT), Ensemble ML (AdaBoost).
AdaBoost Conventional ML.
AdaBoost: Ensemble ML.
CatBoost Gradient boosting optimised for categorical features. Ensemble ML
CNN Convolutional Neural Network: Designed for image processing. Deep ML
CART, MARS CART (Classification and Regression Trees): Conventional ML. Conventional ML (CART), Ensemble ML (MARS).
MARS (Multivariate Adaptive Regression Splines): Ensemble ML.
NLP Natural Language Processing: Algorithms for analysing and processing language data. Conventional ML

ML, machine learning.
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