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Introduction 
South Africa has a quadruple burden of diseases, which severely impacts the delivery of 
healthcare (De Villiers 2021; Louw et  al. 2023; Okeibunor et  al. 2023). Healthcare is 
often inaccessible to people living in remote areas (De Villiers 2021; Louw et al. 2023), and 
most people depend on limited public resources. Limited public institutional capacity, 
staff  shortages, high staff turnover rates, and variability in skills levels exacerbate 
the demand on the healthcare system and can lead to compromised care and patient safety 
(De Villiers 2021). 

Artificial intelligence (AI) has been posited to address some of these challenges. Artificial 
intelligence refers to the imitation of human intelligence by automated processes (Kuziemsky 
et al. 2019) such as the use of machine learning (i.e., training machines to learn from datasets 
and performs tasks; Shandhi & Dunn 2022) and the use of generative AI (i.e., the use of large 
language models to do a range of tasks). Artificial intelligence has been applied in healthcare 
to assist in the diagnoses of diseases, analyse healthcare plans, monitor health, develop 
personalised treatment plans, and perform surgical treatment through robotics (Amisha et al. 
2019). Artificial intelligence shows potential for personalised medicine as individual risk can 
be predicted from patient data that enables the development of individualised treatment 
plans, which can enhance patient outcomes (Amisha et  al. 2019; Kuziemsky et  al. 2019; 
Shandhi & Dunn 2022). Artificial intelligence can also streamline healthcare delivery and 
provide more efficient healthcare, for example, online appointment scheduling, online check-
ins, digitalisation of medical records, and automatic reminders for follow-up appointments 
(Amisha et al. 2019).

Within the field of AI, machine learning (ML) has been used in predictive analytics where 
predictive models are formed by combining machine learning and traditional statistics and are 
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used for prognosis, optimising healthcare delivery, and 
individualised treatment (Manlhiot 2018). Machine learning 
includes conventional machine learning (which focuses on 
developing algorithms and models that permit computers to 
learn from information); deep learning (which uses neural 
networks to simulate the human brain to learn from 
unstructured data, such as  images and speech recognition); 
and ensemble learning (which combines multiple models to 
improve accuracy and robustness), and can be applied to 
both conventional and deep learning models (Sharifani & 
Amini 2023). Machine learning models are useful to 
determine which patients are likely to benefit from a 
particular treatment based on certain characteristics (e.g., 
genetically informed therapeutic planning) (Dong et al. 2015; 
Shandhi & Dunn 2022) and to identify biomarkers that can 
assist in early detection of disease, prediction of treatment 
response, and provide indicators of the progression of 
diseases (Shandhi & Dunn 2022). 

Review question
The following is the review question: ‘What articles on AI used 
in healthcare in South Africa were published in the last 5 years?’ 
The objectives were to determine: (1) what the status of using 
AI in the South African health system is, and (2) what 
applications of AI-based innovations are currently in use in 
the health sector in South Africa. As no generative AI articles 
were found, the review focused on machine learning.

Materials and methods
Research design
This scoping review followed the guidelines of the Joanna 
Briggs Institute (JBI) for evidence-synthesis (Aromataris et al. 
2024; Peters et  al. 2020), and the reporting is done in 
accordance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses extension for scoping reviews 
(PRISMA-ScR) checklist (Tricco et al. 2018). 

Protocol and registration
The review protocol was registered in Open Science 
Framework (OSF) prior to conducting the study, and is 
available at https://doi.org/10.17605/OSF.IO/2SMU4

Eligibility criteria
Given the rate of development of technology, this scoping 
review collected and analysed peer-reviewed full-text 
empirical research articles written in English from 2020 to 
2024 to ensure that only the latest research articles pertaining 
to the use of AI in healthcare settings in South Africa are 
included. All study methods were considered, except non-
research studies such as reviews and opinion article. Using 
the PCC (population, concept, context) framework (Peters 
et al. 2020), inclusion and exclusion criteria were formulated 
(Table 1). The common types of machine learning are defined 
in Appendix 2. Studies that did not comply with the inclusion 
criteria were excluded. 

Search strategy, selection of sources, and data 
extraction
We used the key terms of AI, machine learning and deep 
learning synonyms, South Africa and health sector 
(see Appendix 1, Table 1-A1 for detailed search strategy), 
to conduct searches on PubMed, Academic search 
Complete, and Google Scholar, to retrieve the most 
relevant data. Descriptors such as titles, abstracts, and full 
texts of relevant and suitable articles on the topic were 
used to conduct the search. Relevant studies from the 
reference lists of retrieved articles were hand-searched 
from Google Scholar database (‘snowballing’). 

Following the literature search, all identified sources 
were imported to the systematic review management 
software, namely Covidence (2023), which guided the 
screening process comprising the screening of titles and 
abstracts, review of full texts, and data extraction. Two 
reviewers (the third and fourth authors) screened the 
sources independently for eligibility. Disagreements 
between the reviewers at each stage of the selection 
process were resolved through online discussion by the 
reviewers and checked by the first author. The PRISMA-
ScR flowchart was used to illustrate the search process 
(the removal of duplicates, the number of qualifying 
sources included for analysis, and the reason for 
excluding non-eligible sources). Using a data extraction 
tool in Excel, data were extracted by the fourth author, 
and checked by the first author. There was no formal 
quality assessment of the sources included in the review 
because a formal assessment of the methodological 
quality is usually not required for scoping reviews (Peters 
et al. 2020).

Data analysis
For scoping reviews, frequency counts for the required 
fields of data are sufficient, although a more in-depth 
analysis can be appropriate (Peters et al. 2020). Frequency 
counts and thematic analysis Braun and Clarke (2006) 
were performed by the first author. Themes of health area, 
source of data and type of machine learning were analysed.

Ethical considerations
This article followed all ethical standards for research 
without direct contact with human or animal subjects.

TABLE 1: Inclusion and exclusion criteria based on participants, context, and 
concept.
Terms Inclusion Exclusion

Participants Studies where all patients or 
records are in South African 
health care setting

South African patients identified 
as part of an international 
multi-country study

Context South African health service 
(e.g., hospitals, clinics, 
communities, or research 
settings, medical institutions)

-

Concept Conventional machine learning, 
deep learning and ensemble 
learning

Standard statistical analysis, 
generative AI

AI, artificial intelligence.
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Review findings 
Selection of sources of evidence
A total of 810 records were retrieved for the period from 
2020 to 2024, with one current unpublished study included. 
Thirty-five articles (n = 35) were selected for final analysis 
(Figure 1). Of the 35 articles, 9 (25.7%) were published 
between 2020 and 2021, and 26 (74.3%) between 2022 and 
2025 (Table 2). 

A summary of the studies included in the review
Three articles were on the same study focusing on 
developing a machine learning algorithm to predict 
mortality in critically ill children (Pienaar et  al. 2022a, 
2022b, 2023). Most data were primary data (n = 14, 42.4%) 
or from established data registries such as the South 
African Cancer Registry, the National Health Laboratory 
Services (NHLS) and the World Data registry of COVID-19 
cases (Table 2).

Characteristics of the studies 
The reviewed studies used a range of conventional machine 
learning (50%), deep learning (20.2%) and ensemble learning 
techniques (29.8%) focusing on different health areas 
(Table 3). Two health areas had the highest number of 
studies: cancer and COVID-19 (n = 7, 21.2% each) (Table 2). 

All the studies on cancer used data from the South African 
Cancer Registry. Separate studies were conducted by groups 
with overlapping authors who work in the field, with three 
studies by Achilonu et al. (2021a, 2021b, 2022) and two 
studies by Olago et al. (2020, 2023) (Table 3). The purpose of 
using conventional and ensemble machine learning ranged 
from classifying risk for length of stay (Achilonu et  al. 
2021a), generating histopathology reports (Olago et al. 2020) 
and cancer diagnoses related to human immunodeficiency 
virus (HIV) diagnoses (Olago et  al. 2023) and processing 
free text to classifying benign versus malignant cancer 
(Achilonu et  al. 2021b, 2022). Deep learning was used to 
generate malignant urine cytology images (McAlpine et al. 
2022), and the prediction of the Gleason Grade group in 
prostate cancer (Mokoatle et al. 2022).

Studies on COVID-19 were also common, because of the 
recent pandemic (Table 3). Data sets were obtained from the 
National Institute of Communicable Diseases (NICD) 
(Lieberman et  al. 2023), the National Health Laboratory 
Service (NHLS) (Stevenson et  al. 2021) and Our World in 
Data (Akinola et al. 2023), a publicly available repository on 
COVID-19 daily case counts in South Africa. The rest of the 
studies used either primary data (Okonkwo, Amusa & 
Twinomurinzi 2022), hospital records (Chimbunde et  al. 
2023) or data from the Hospital and Emergency Centre 
Tracking Information System application (HECTIS7), which 
is the emergency department electronic register in the 
Western Cape (Fuller et al. 2023). Deep learning and machine 
learning were used to predict ICU mortality (Chimbunde 
et al. 2023) and forecast new waves of COVID-19 (Akinola 
et  al. 2023; Stevenson et  al. 2021), and conventional and 
ensemble machine learning were used to confirm vaccination 
status (Okonkwo et al. 2022), classify hot spots (Lieberman 
et al. 2023) and predict adverse outcomes (Fuller et al. 2023).

The next most common health area targeted with machine 
learning was HIV and/or tuberculosis (TB) (n = 8, 24.2%) 
(Table 2). Six of the eight studies used primary data collected 
from observational studies (Eken et  al. 2020; Majam et  al. 
2023; Maskew et al. 2022; Onywera et al. 2020; Pahar et al. 
2021; Turbé et al. 2021), two studies used hospital records of 
patients receiving anti-retroviral therapy (ART) treatment 

TABLE 2: A summary of articles (N = 35).
Variables Frequency

n %
Year
2020–2021 9 25.7
2022–2024 26 74.3
Health area
HIV or TB 8 24.2
Cancer 7 21.2
COVID-19 7 21.2
Other 11 33.3
Data
Primary data 14 42.4
Registry 11 33.3
Other 8 24.2

COVID-19, coronavirus disease 2019; HIV, human immunodeficiency virus; TB, tuberculosis.

Note: The bold values represent total. 

FIGURE 1: PRISMA-ScR flowchart illustrating the search process.
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(Esra et al. 2023a, 2023b), and one study used data on culture 
positive isolates confirmed by the National Health Laboratory 
Services (NHLS) (Achilonu et  al. 2021a) (Table 3). The 
purpose of using machine learning ranged from using deep 
learning to develop movement tracking systems (Eken et al. 
2020), classifications of TB-related versus other coughs, 
assessing the impact of HIV on Human papillomavirus 
(HPV) (Onywera et al. 2020) to the classification of rapid HIV 
tests (Turbé et al. 2021). Conventional and ensemble machine 
learning were used to classify and predict poor outcomes 
from HIV such as interruptions to ART treatment (Esra et al. 
2023a, 2023b), attendance at clinic visit and viral load 
(Maskew et al. 2022), HIV risk (Majam et al. 2023), and drug 
resistance (Sibandze et al. 2020).

The rest of the studies (n = 9, 27.2%) focused on a range of 
different health focus areas (Table 3). Three studies conducted 
by the same group of authors, specifically focused on 
paediatric critical illnesses, using primary data and deep 
learning to develop a model to predict mortality in paediatric 
ICUs (Pienaar et  al. 2022a), followed by a comparison of 
different models using conventional and ensemble machine 
learning (Pienaar et  al. 2022b). Thereafter, a study was 
performed by experts to describe the domain knowledge for a 
machine learning model for paediatric illness (Pienaar et al. 
2023). Deep learning was also used to screen digital otoscopic 
images (44) and a screening tool for severe acute malnutrition 
(Nel et al. 2022) (Table 3). Conventional and ensemble machine 
learning were further used to predict mortality in heart failure 
(Mpanya et  al. 2023), risk of readmission in surgical and 
trauma emergency departments (Tokac et  al. 2025a, 2025b), 
and to identify risk factors for mortality in laparotomy surgery 
(Smith et al. 2022), gestational diabetes (Kolozali et al. 2024) 
and provide malaria warnings (Martineau et al. 2022). In one 
paper, a combination of deep learning, ensemble and 
conventional learning was used to develop the most effective 
model for triage of critically ill children presenting to a tertiary 
hospital (Pienaar et al., 2022b).

Lastly, a range of AI methods used in the reviewed studies 
fall into three main types based on their characteristics and 
applications (Table 1-A2). Conventional machine learning 
was most often used (22, 66.7%) among the articles, usually 
combined with ensemble learning (12/22) or deep learning 
(2/22) or in a combination of all three (4/22) (Table 3). 
Conventional machine learning relies on traditional statistical 
and mathematical approaches and is used for tasks such as 
classification and regression, often in simpler datasets and 
problems where feature extraction is typically performed 
manually. Ensemble boosting was used in 18 (54.5%) articles, 
often in combination with deep or conventional machine 
learning (14/18) (Table 3). Ensemble learning combines 
multiple models, such as decision trees, to enhance prediction 
accuracy, robustness, and generalisability, which are useful 
in managing diverse and imbalanced datasets. Lastly, deep 
learning, which is characterised by its reliance on neural 
networks with multiple layers, designed to process large and 
complex datasets, was used in 14 articles (42.4), eight times 
on its own (Table 3). 

Discussion
South Africa has a history of disparity in access to 
technology and education, presenting challenges in 
adopting the use of  artificial intelligence in the health 
sector. Digital transformation is growing at a slow rate in 
the private health sector, and more so in public sector, 
compared to other industries such as banking and 
insurance (Willie 2020). This review reflects the slow 
uptake of machine learning, similar to a review on AI use 
in the health sector in Tanzania (Sukums et al. 2023), but 
does show some increasing emergence of machine learning 
to predict different health outcomes in South Africa. The 
high number of studies on HIV and/or TB is possibly 
linked to HIV and/or TB being one of the key burden of 
diseases (De Villiers 2021; Louw et  al. 2023) and those 
studies reported issues of health-seeking behaviour and 
compliance with treatment regimens (Stangl et  al. 2019). 
Similarly, the recent COVID-19 pandemic, with its 
widespread impact, the national requirement of reporting 
COVID-19 cases for surveillance, and the need for rigorous 
clinical and societal responses (Van Der Schaar et al. 2021), 
is also reflected in the studies examined in this review.

There has been numerous reports on the importance of 
integrating machine learning techniques into local and 
national healthcare systems to improve health response and 
health outcomes (Van Der Schaar et  al. 2021). However, 
access to big data routinely collected in South Africa is 
limited (Tokac et  al. 2025a, 2025b), and the review 
demonstrates the challenges of integrating machine learning 
into data in the health sector. Firstly, similar to another 
scoping report (Sukums et  al. 2023), the high usage of 
primary data highlights the challenges of limited access to 
or availability of large volumes of high-quality data for 
training and validating AI-based models. Having the 
availability of the national registries of the NICD and NHLS 
enables researchers to access these large data sets to apply 
deep learning to classify images and results and apply 
conventional and ensemble machine learning. 

Secondly, there is lack of data analysis skills in the health 
sector (Ngiam & Khor 2019). This is similar to reports of 
challenges related to human, infrastructure, and financial 
resources for the design, development, and implementation 
of AI-based solutions in the health sector as reported in 
Tanzania (Sukums et al. 2023). This is also crucial, considering 
ethical and medico-legal implications, health workers’ 
understanding of machine learning tools, and data privacy 
and security (Ngiam & Khor 2019).

Implications and recommendations
Overcoming challenges in South Africa requires access to 
high quality big data, inclusive policies that promote 
widespread access to the benefits of using AI in healthcare, 
and AI literacy in the health sector to understand and address 
ethical and medico-legal implications.
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Strengths and limitations
A strength of this scoping review is its focus on machine 
learning; however, a limitation is that there is a possibility 
that important articles might have been missed because of 
a wide range of machine learning techniques.

Conclusion
In South Africa, there has been an increase in the use of 
machine learning in the analysis of health data, but access to 
big data appears to be a challenge, and disparities have had 
an impact on the adoption of AI technologies in the healthcare 
sector. 
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Appendices
Appendix 1

TABLE 1-A1: Search terms used to retrieve sources.
PubMed (((((South Africa[MeSH Terms]) OR (South Africa[Title/Abstract]) OR (South Africa)[Text Word])) AND 

((((((Health) OR (Health symptoms[MeSH Terms])) OR (diseases diagnosis[Title/Abstract])) OR
(health sector[Title/Abstract])) OR (Health care sector[Title/Abstract])) OR (Disease[Text Word]))) AND 
(((((((((((((Artificial intelligence [MeSH Terms]) OR (AI[Title/Abstract])) OR (Artificial intelligence[Title/Abstract])) OR (Machine Intelligence[Title/Abstract])) OR 
(Machine Intelligence)) OR (Computer Reasoning[Title/Abstract])) OR (Deep learning[Title/Abstract])) OR (Machine learning[Title/Abstract])) OR
(Artificial intelligence based assessment[Title/Abstract])) OR (Artificial intelligence based assessment[Title/Abstract])) OR (Artificial intelligence-based 
assessment[Title/Abstract])) OR (Artificial intelligence-based innovations[Title/Abstract])) OR (Artificial intelligence based innovations [Title/Abstract]))

Academic Search 
Complete

((‘health’/exp OR ‘health’) OR ‘health symptoms’ OR ‘diseases diagnosis’ OR ‘health sector’ OR ‘health care sector’) AND ((‘artificial intelligence’/exp OR 
‘artificial intelligence’) OR ‘machine intelligence’ OR (‘automated reasoning’/exp OR ‘automated reasoning’) OR (‘deep learning’/exp OR ‘deep learning’) OR 
‘machine learning’ OR ‘artificial intelligence based assessment’ OR ‘artificial intelligence-based innovations’) AND (South Africa)

Google Scholar (‘health symptoms’ OR ‘diseases diagnosis’ OR ‘health sector’ OR ‘health care sector’ AND ‘artificial intelligence’ OR ‘machine intelligence’ OR ‘automated 
reasoning’ OR ‘automated reasoning’ OR ‘deep learning’) AND (South Africa)
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Appendix 2

TABLE 1-A2: Detailed categorisation of machine learning methods by type.
ML methods Explanation of acronyms ML types

SVM, NB, GLM, 
C5.0, ETC, RF, 
ANN

SVM (Support Vector Machine), NB (Naive Bayes), GLM (Generalised Linear Model), 
C5.0 (Decision Tree Model): Conventional ML.
ETC: Extra Trees Classifier- RF: Ensemble ML (decision tree-based).
ANN: Deep ML (neural networks).

Conventional ML (SVM, NB, GLM, C5.0), 
Ensemble ML (ETC, RF), Deep ML (ANN).

GPR Gaussian Process Regression: A probabilistic regression approach. Conventional ML
GAN Generative Adversarial Network: Deep learning for synthetic data generation. Deep ML
XGBoost, Light 
GBM, GBC, 
LSTM, RNN

XGBoost (Extreme Gradient Boosting), Ligh GBM (Ligh Gradient Boosting Machine), 
GBC (Gradient Boosting Classifier): Ensemble ML.
LSTM, RNN (Long Short-Term Memory, Recurrent Neural Network): Deep ML.

Ensemble ML (XGBoost), 
Deep ML (LSTM, RNN).

KNN, SGD, DT, 
AdaBoost

KNN (K-Nearest Neighbours), SGD (Stochastic Gradient Descent), DT (Decision Tree): 
Conventional ML.
AdaBoost: Ensemble ML.

Conventional ML (KNN, SGD, DT), Ensemble ML (AdaBoost).

CatBoost Gradient boosting optimised for categorical features. Ensemble ML
CNN Convolutional Neural Network: Designed for image processing. Deep ML
CART, MARS CART (Classification and Regression Trees): Conventional ML.

MARS (Multivariate Adaptive Regression Splines): Ensemble ML.
Conventional ML (CART), Ensemble ML (MARS).

NLP Natural Language Processing: Algorithms for analysing and processing language data. Conventional ML

ML, machine learning.
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