SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

NOUBACTEP, C. Characterising the reactivity of metallic iron in Fe0/As-rock/H2O systems by long-term column experiments. Water SA [online]. 2012, vol.38, n.4, pp. 511-518. ISSN 1816-7950.

    ANTIA DDJ (2010) Sustainable zero-valent metal (ZVM) water treatment associated with diffusion, infiltration, abstraction and recirculation. Sustainability 2 2988-3073. [ Links ]

    BARTZAS G and KOMNITSAS K (2010) Solid phase studies and geochemical modelling of low-cost permeable reactive barriers. J. Hazard. Mater. 183 301-308. [ Links ]

    BARTZAS G, KOMNITSAS K and PASPALIARIS I (2006) Laboratory evaluation of Fe0 barriers to treat acidic leachates. Miner. Eng. 19 505-514. [ Links ]

    BOJIC A, PURENOVIC M and BOJIC D (2004) Removal of chro-mium(VI) from water by micro-alloyed aluminium based composite in flow conditions. Water SA 30 353-359. [ Links ]

    BOJIC A, PURENOVIC M, BOJIC D and NDJELKOVIC T (2007) Dehalogenation of trihalomethanes by a micro-alloyed aluminium composite under flow conditions. Water SA 33 297-304. [ Links ]

    BOJIC A, BOJIC D and ANDJELKOVIC T (2009) Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions. J. Hazard. Mater. 168 813-819. [ Links ]

    BUCK RP, RONDININI S, COVINGTON AK, BAUCKE FGK, BRETT CMA, CAMOES MF, MILTON MJT, MUSSINI T, NAU-MANN R, PRATT KW, SPITZER P and WILSON GS (2002) Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 74 2169-2200. [ Links ]

    BUNDSCHUH J, LITTER M, CIMINELLI VST, MORGADA ME, CORNEJO L, HOYOS SG, HOINKIS J, ALARCÓN-HERRERA MT, ARMIENTA MA and BHATTACHARYA P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America - A critical analysis. Water Res. 44 5828-5845. [ Links ]

    COMBA S, DI MOLFETTA A and SETHI R (2011) A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 215 595-607. [ Links ]

    FARRELL J, WANG J, O'DAY P and CONKLIN M (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ. Sci. Technol. 35 2026-2032. [ Links ]

    GHEJU M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 222 103-148. [ Links ]

    GHEJU M and IOVI A (2006) Kinetics of hexavalent chromium reduction by scrap iron. J. Hazard. Mater. 135 66-73. [ Links ]

    GHEJU M, IOVI A and BALCU I (2008) Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH. J. Hazard. Mater. 153 655-662. [ Links ]

    GHEJU M and BALCU I (2010) Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. J. Hazard. Mater. 182 484-493. [ Links ]

    GHEJU M and BALCU I (2011) Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater. 196 131-138. [ Links ]

    GILES DE, MOHAPATRA M, ISSA TB, ANAND S and SINGH P (2011): Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manage. 92 3011-3022. [ Links ]

    GILLHAM RW (2010) Development of the granular iron permeable reactive barrier technology (good science or good fortune). In: Chen Y, Tang X and Zhan L (eds.). Advances in Environmental Geotechnics: Proceedings of the International Symposium on Geoenvironmental Engineering, Hangzhou, China, September 8-10, 2009. Springer, Berlin/London. 5-15. [ Links ]

    HENDERSON AD and DEMOND AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 24 401-423. [ Links ]

    HENDERSON AD and DEMOND AH (2011) Impact of solids formation and gas production on the permeability of ZVI PRBs. J. Environ. Eng. 137 689-696. [ Links ]

    ITRC (INTERSTATE TECHNOLOGY & REGULATORY COUNCIL) (2011) Permeable reactive barrier: Technology update. PRB-5. Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Technology Update Team. URL: www.itrcweb.org (Accessed 9 March 2012). [ Links ]

    JONES RA and NESBITT HW (2002) XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs2). Am. Miner. 87 1692-1698. [ Links ]

    KALIN M, WHEELER WN and MEINRATH G (2005) The removal of uranium from mining waste water using algal/microbial bio-mass. J. Environ. Radioact. 78 151-177. [ Links ]

    KOMNITSAS K, BARTZAS G, FYTAS K and PASPALIARIS I (2007) Long-term efficiency and kinetic evaluation of ZVI barriers during clean-up of copper containing solutions. Miner. Eng. 20 1200-1209. [ Links ]

    KÜMMERER K (2011) Emerging contaminants versus micro-pollutants. Clean - Soil, Air, Water 39 889-890. [ Links ]

    LACKOVIC JA, NIKOLAIDIS NP and DOBBS GM (2000) Inorganic arsenic removal by zero-valent iron. Environ. Eng. Sci. 17 29-39. [ Links ]

    LANDIS RL, GILLHAM RW, REARDON EJ, FAGAN R, FOCHT RM and VOGAN JL (2001) An examination of zero-valent iron sources used in permeable reactive barriers. Proc. 3rd International Containment Technology Conference, 10-13 June 2001, Florida State University, Tallahassee. Orlando, FL. 5 pages. [ Links ]

    LEUPIN OX and HUG SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 39 1729-1740. [ Links ]

    LIN H, ZHU L, XU X, ZANG L and KONG Y (2011) Reductive transformation and dechlorination of chloronitrobenzenes in UASB reactor enhanced with zero-valent iron addition. J. Chem. Technol. Biotechnol. 86 290-298. [ Links ]

    LUNA-VELASCO A, SIERRA-ALVAREZ R, CASTRO B and FIELD JA (2010) Removal of nitrate and hexavalent uranium from ground-water by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol. Bioeng. 107 933-942. [ Links ]

    MEINRATH G and SPITZER P (2000) Uncertainties in determination of pH. Mikrochem. Acta 135 155-168. [ Links ]

    MIEHR R, TRATNYEK GP, BANDSTRA ZJ, SCHERER MM, ALOWITZ JM and BYLASKA JE (2004) Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environ. Sci. Technol. 38 139-147. [ Links ]

    NGAI TKK, SHRESTHA RR, DANGOL B, MAHARJAN M and MURCOTT SE (2007) Design for sustainable development -Household drinking water filter for arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health A 42 1879-1888. [ Links ]

    NOUBACTEP C (2003) Investigations for the passive in-situ immobilization of uranium (VI) from water (in German). Dissertation, TU Bergakademie Freiberg, Wiss. Mitt. Institut für Geologie der TU Bergakademie Freiberg, Band 21.ISSN1433-1284. 140 pp. [ Links ]

    NOUBACTEP C (2009) Characterizing the reactivity of metallic iron upon methylene blue discoloration in Fe0/MnO2/H2O systems. J. Hazard. Mater. 168 1613-1616. [ Links ]

    NOUBACTEP C (2010a) The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36 663-670. [ Links ]

    NOUBACTEP C (2010b) Characterizing the reactivity of metallic iron in Fe0/EDTA/H2O systems with column experiments. Chem. Eng. J. 162 656-661. [ Links ]

    NOUBACTEP C (2010c) Elemental metals for environmental remediation: Learning from cementation process. J. Hazard. Mater. 181 1170-1174. [ Links ]

    NOUBACTEP C (2011a) Metallic Iron for Safe Drinking Water Production. Freiberg Online Geology 27. ISSN 1434-7512 (www. geo.tu-freiberg.de/fog). 38 pp. [ Links ]

    NOUBACTEP C (2011b) Aqueous contaminant removal by metallic iron: Is the paradigm shifting? Water SA 37 419-426. [ Links ]

    NOUBACTEP C (2011c) Metallic iron for water treatment: A knowledge system challenges mainstream science. Fresenius Environ. Bull. 20 2632-2637. [ Links ]

    NOUBACTEP C (2011d) Characterizing the reactivity of metallic iron in Fe0/UVI/H2O systems by long-term column experiments. Chem. Eng. J. 171 393-399. [ Links ]

    NOUBACTEP C (2012) Investigating the processes of contaminant removal in Fe0/H2O systems. Korean J. Chem. Eng. DOI: 10.1007/ s11814-011-0298-8. [ Links ]

    NOUBACTEP C, CHEN-BRAUCHER D and SCHLOTHAUER T (2008) Arsenic release from a natural rock under near-natural oxidizing conditions. Eng. Life Sci. 8 622-630. [ Links ]

    NOUBACTEP C, FALL M, MEINRATH G, and MERKEL B (2004) A simple method to select zero valent iron material for ground-water remediation. Paper presented at Quebec 2004, 57th Canadian Geotechnical Conference, 5th Joint CGS/IAH-CNC Conference, Session 1A. 6-13. 24-27 October, Quebec. [ Links ]

    NOUBACTEP C, LICHA T, SCOTT TB, FALL M and SAUTER M (2009) Exploring the influence of operational parameters on the reactivity of elemental iron materials. J. Hazard. Mater. 172 943-951. [ Links ]

    NOUBACTEP C, MEINRATH G, DIETRICH P, SAUTER M and MERKEL B (2005) Testing the suitability of zerovalent iron materials for reactive walls. Environ. Chem. 2 71-76. [ Links ]

    NOUBACTEP C, SCHÖNER A and SCHUBERT M (2008) Characterizing As, Cu, Fe and U solubilization by natural waters. In: Merkel BJ andn Hasche-Berger A (eds.) Uranium in the Environment. Springer, Berlin, Heidelberg. 549-558. [ Links ]

    NOUBACTEP C, CARÉ S and CRANE RA (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 223 1363-1382. [ Links ]

    O'HANNESIN SF and GILLHAM RW (1998) Long-term performance of an in situ "iron wall" for remediation of VOCs. Ground Water 36 164-170. [ Links ]

    PHILLIPS DH, VAN NOOTEN T, BASTIAENS L, RUSSELL MI, DICKSON K, PLANT S, AHAD JME, NEWTON T, ELLIOT T and KALIN RM (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 44 3861-3869. [ Links ]

    REARDON EJ (2005) Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environ. Sci. Tchnol. 39 7311-7317. [ Links ]

    REARDON EJ (1995) Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates. Environ. Sci. Technol. 29 2936-2945. [ Links ]

    SALTER-BLANC AJ and TRATNYEK PG (2011) Effects of solution chemistry on the dechlorination of 1,2,3-trichloropropane by zerovalent zinc. Environ. Sci. Technol. 45 4073-4079. [ Links ]

    SARATHY V, SALTER AJ, NURMI JT, JOHNSON GO, JOHNSON RL and TRATNYEK PG (2010) Degradation of 1,2,3-trichloro-propane (TCP): Hydrolysis, elimination, and reduction by iron and zinc. Environ. Sci. Technol. 44 787-793. [ Links ]

    SATAPANAJARU T, ANURAKPONGSATORN P, SONGSASEN A, BOPARAI H and PARK J (2006) Using low-cost iron byproducts from automotive manufacturing to remediate DDT. Water Air Soil Pollut. 175 361-374. [ Links ]

    WANG T-H, LI M-H and TENG S-P (2009) Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite. J. Hazard. Mater. 161 409-415. [ Links ]

    WANNER C, EGGENBERGER U and MÀDER U (2011) Reactive transport modelling of Cr(VI) treatment by cast iron under fast flow conditions. Appl. Geochem. 26 1513-1523. [ Links ]

    YANG JE, KIM JS, OK YS, KIM S-J and YOO K-Y (2006) Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons. Korean J. Chem. Eng. 23 935-939. [ Links ]