SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

VAN DER MERWE, W; BEUKES, JP  and  VAN ZYL, PG. Cr(VI) formation during ozonation of Cr-containing materials in aqueous suspension - implications for water treatment. Water SA [online]. 2012, vol.38, n.4, pp. 505-510. ISSN 1816-7950.

    AUDENAERT WTM, CALLEWAERT M, NOPENS I, CROMPHOUT J, VANHOUCKE R, DUMOULIN A, DEJANS P and VAN HULLE SWH (2010) Full-scale modelling of an ozone reactor for drinking water treatment. Chem. Eng. J. 157 (2-3) 551-557. [ Links ]

    BARTLETT RJ (1991) Chromium Cycling in Soils and Water: Links, Gaps, and Methods. Environ. Health Perspect. 92 17-24. [ Links ]

    BELTRÁN FJ (2003) Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, London. 358 pp. [ Links ]

    BEUKES JP, DAWSON NF and VAN ZYL PG (2010) Theoretical and practical aspects of Cr(VI) in the South African ferrochrome industry. J. S. Afr. Inst. Min. Metall. 110 (12) 743-750. [ Links ]

    BEUKES JP and GUEST RN (2001) Cr(VI) generation during milling. Miner. Eng. 14 (4) 423-426. [ Links ]

    CAMEL V and BERMOND A (1998) The use of ozone and associated oxidation processes in drinking water treatment. Water Res. 32 (11) 3208-3222. [ Links ]

    CAWTHORN RG (1999) The platinum and palladium resources of the Bushveld Complex. S. Afr. J. Sci. 95 481-489. [ Links ]

    COCA M, PENA M and GONZALEZ G (2007) Kinetic study of ozonation of molasses fermentation wastewater. J. Hazard. Mater. 149 (2) 364-370. [ Links ]

    CRAMER LA, BASSON J and NELSON LR (2004) The impact of platinum production from UG2 ore on ferrochrome production in South Africa. J. S. Afr. Inst. Min. Metall. 104 (9) 517-527. [ Links ]

    DIONEX (2003) Application Update 144. Dionex. URL: http://www.dionex.com/en-us/webdocs/4242-AU144_LPN1495.pdf (Accessed 9 October 2011). [ Links ]

    EMSLEY J (2003) Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press, Oxford. 538 pp. [ Links ]

    ETXEBARRIA N, ARANA G, ANTOLÍN R, DIEZ E, BORGE G, POSADA T and RAPOSO JC (2005) Chromium powder as a reference material for the quality control of particle-size measurement by laser diffraction. Powder Technol. 155 (1) 85-91. [ Links ]

    GLASTONBURY RI, VAN DER MERWE W, BEUKES JP, VAN ZYL PG, LACHMANN G, STEENKAMP CJH, DAWSON NF and STERART HM (2010) Cr(VI) generation during sample preparation of solid samples - A chromite ore case study. Water SA 36 (1) 105 -110. [ Links ]

    GOGATE PR and PANDIT AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8 (3-4) 501-551. [ Links ]

    GU F and WILLS BA (1988) Chromite- mineralogy and processing. Miner. Eng. 1 (3) 235-240. [ Links ]

    GUROL MD and SINGER PC (1982) Kinetics of ozone decomposition: A dynamic approach. Environ. Sci. Technol. 16 (7) 377-441. [ Links ]

    IARC (1997) International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 49: Chromium, Nickel and Welding. URL: http://monographs.iarc.fr/ENG/Monographs/vol49/volume49.pdf (Accessed 1 September 2010). [ Links ]

    ICDA (2010) International Chromium Development Association. Statistical Bulletin (2010 edn.). 1-65. [ Links ]

    LANXESS (2011) URL: http://lanxess.co.za/en/about-lanxess-south-africa/locations/newcastle/ (Accessed 9 October 2011). [ Links ]

    LEGUBE B, PARINET B, GELINET K, BERNE F and CROUE J (2004) Modeling of bromate formation by ozonation of surface waters in drinking water treatment. Water Res. 38 (8) 2185-2195. [ Links ]

    LOVATO ME, MARTIN CA and CASSANO AE (2009) A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chem. Eng. J. 146 (3) 486-497. [ Links ]

    McELROY F, MIKEL D and NEES M (1997) Determination of ozone by ultraviolet analysis, A New Method for Volume II, Ambient Air Specific Methods, Quality Assurance Handbook for Air Pollution Measurement Systems. URL: http://mattson.creighton.edu/Ozone/OzoneEPAMethod.pdf (Accessed 9 October 2011). [ Links ]

    MURTHY YR, TRIPATHY SK and KUMAR CR (2011) Chrome ore beneficiation challenges & opportunities - A review. Miner. Eng. 24 (5) 375-380. [ Links ]

    NAWROCKI J and KASPRZYK-HORDERN B (2010) The efficiency and mechanisms of catalytic ozonation. Appl. Catal., B 99 (1-2) 27-42. [ Links ]

    NEL MV, STRYDOM CA, SCHOBERT HH, BEUKES JP and BUNT JR (2011) Comparison of sintering and compressive strength tendencies of a model coal mineral mixture heat-treated in inert and oxidizing atmospheres. Fuel Process. Technol. 92 (5) 1042-1051. [ Links ]

    PROCTOR DM, OTANI JM, FINLEY BL, PAUSTENBACH DJ, BLAND JA, SPEIZER N and SARGENT EV (2002) Is hexavalent chromium carcinogenic via ingestion? A weight of evidence review. J. Toxicol. Environ. Health, Part A 65 (10) 701-746. [ Links ]

    RAJAGOPAUL R, MBONGWA NW and NADAN C (2008) Guidelines for the Selection and Effective use of Ozone in Water Treatment. WRC Report No. 1596/1/08. Water Research Commision, Pretoria. [ Links ]

    RODMAN DL, CARRINGTON NA and XUE Z (2006) Conversion of chromium(III) propionate to chromium(VI) by the Advanced Oxidation Process Pretreatment of a biomimetic complex for metal analysis. Talanta. 70 (3) 668-675. [ Links ]

    SELCUK H (2005) Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigm. 64 (3) 217-222. [ Links ]

    SOTELO JL, BELTRÁN FJ, BENÍTEZ FJ and BELTRÁN-HEREDIA J (1987) Ozone Decompostion in Water: Kinetic Study. Ind. Eng. Chem. Res. 26 (1) 39-43. [ Links ]

    STERN AH (2010) A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure. Environ. Res. 110 (8) 798-807. [ Links ]

    THOMAS DH, ROHRER JS, JACKSON PE, PAK T and SCOTT JN (2002) Determination of hexavalent chromium at the level of the California Public Health Goal by ion chromatography. J. Chromatogr. 956 (1-2) 255-259. [ Links ]

    WAGNER NJ and HLATSHWAYO B (2005) The occurrence of potentially hazardous trace elements in five Highveld coals. Int. J. Coal Geol. 63 (3-4) 228-246. [ Links ]

    XIAO Z and LAPLANTE AR (2004) Characterizing and recovering the platinum group minerals - a review. Miner. Eng. 17 (9-10) 961-979. [ Links ]