SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

COZMUTA, L Mihaly et al. The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. Water SA [online]. 2012, vol.38, n.2, pp. 269-278. ISSN 1816-7950.

    ALVAREZ A, GARCIA-SANCHEZ A and QUEROL X (2003) Purification of metal electroplating waste waters using zeolites. WaterRes. 37 4855-4862. [ Links ]

    APIRATIKUL R and PAVASANT P (2008) Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 144 245-258. [ Links ]

    ARGUN M E (2008) Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics. J. Hazard. Mater. 150 587-595. [ Links ]

    ATHANASIADIS K and HELMREICH B (2005) Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. WaterRes. 39 1527-1532. [ Links ]

    CORUH S (2008) The removal of zinc ions by natural and conditioned clinoptilolites. Desalination 225 41-57. [ Links ]

    DAVILA-RANGEL JI and SOLACHE-RIOS M (2006) Sorption of cobalt by two Mexican clinoptilolite rich tuffs zeolitic rocks and kaolinite. J. Radioanal. Nucl. Chem. 270 (2) 465-471. [ Links ]

    DOULA M K (2006) Removal of Mn2+ ions from drinking water by using Clinoptilolite and a Clinoptilolite-Fe oxide system. Water Res. 40 3167-3176. [ Links ]

    EL-KAMASH A, KAKI AA and EL-GELEEL MA (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J. Hazard. Mater. B127 (2005) 211-220. [ Links ]

    ERDEM E, KARAPINAR N and DONAT R (2004) The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280 309-314. [ Links ]

    FAGHIHIAN H, MARAGEH MG and KAZEMIAN H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal. Appl. Radiat. Isot. 50 655-660. [ Links ]

    GARCIA-MENDIETA A, SOLACHE-RIOS M and OLGUIN MT (2009) Evaluation of the sorption properties of a Mexican clinop-tilolite-rich tuff for iron, manganese and iron-manganese systems. Microporous Mesoporous Mater. 118 489-495. [ Links ]

    GORKA A, BOCHENEK R, WARCHOL J, KACZMARSKI K and ANTOSA D (2008) Ion exchange kinetics in removal of small ions. Effect of salt concentration on inter and intraparticle diffusion. Chem. Eng. Sci. 63 637-650. [ Links ]

    GUNAY A, ERTAN A and TOSUN I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 146 362-371. [ Links ]

    HERNANDEZ H R, DIAZ L and AGUILAR-ARMENTA G (1999) Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep. Purif. Technol. 15 163-173. [ Links ]

    INGLEZAKIS V J, LOIZIDOU MD and , GRIGOROPOULOU HP (2002) Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res. 36 2784-2792. [ Links ]

    INGLEZAKIS V J, LOIZIDOU MD and GRIGOROPOULOU HP (2004) Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. J. Colloid Interface Sci. 275 570-576. [ Links ]

    INGLEZAKIS V J, STYLIANOU A, GKANTZOU D and LOIZIDOU MD (2007) Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210 248-256. [ Links ]

    JAMIL T S, IBRAHIM HS, EL-MAKSOUD IHA and EL-WAKEEL ST (2010) Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination 258 34-40. [ Links ]

    KARADAG D, KOC Y, TURAN M and ARMAGAN B (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J. Hazard. Mater. B136 604-609. [ Links ]

    LIU P, YAO Y, ZHANG X and WANG J (2011) Rare earth metals ion-exchanged β-zeolites as supports of platinum catalysts for hydroi-somerization of n-heptane. Catalysis kinetics and reactors. Chin. J. Chem. Eng. 19 (2) 278-284. [ Links ]

    MATIS K A, ANASTASIOS I, ZOUBOULIS GALLIOS GP, ERWE T and BLOCHER C (2004) Application of flotation for the separation of metal-loaded zeolites. Chemosphere 55 65-72. [ Links ]

    MIER M V, RAYMUNDO LC, GEHR R , CISNEROS BEJ and PEDRO JJA (2001) Heavy metal removal with Mexican clinoptilo-lite: multi-component ionic exchange. Water Res. 35 (2) 373-378. [ Links ]

    MOTSI T, ROWSON NA and SIMMONS MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92 42-48. [ Links ]

    OREN H A and KAYA A (2006) Factors affecting adsorption characteristics of Zn on two natural zeolites. J. Hazard. Mater. B131 59-65. [ Links ]

    PANAGIOTIS M (2011) Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 144 15-18 [ Links ]

    PERIC J, TRGO N and MEDVIDOVIC NV (2004) Removal of zinc, copper and lead by natural zeolite a comparison of adsorption isotherms. Water Res. 38 1893-1899. [ Links ]

    PETRUS R and WARCHOL JK (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res. 39 819-830. [ Links ]

    RAHMAN A R, IBRAHIM HA, HANAFI M and MOMEN NM (2010) Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility. Chem. Eng. J. 157 100-112. [ Links ]

    SEQUEIRA-TEUTLI A, RIOS R and OLGUIN MT (2009) Influence of Na+, Ca2+, Mg2+ and NH4+ on the sorption behavior of Cd2+ from aqueous solutions by a Mexican zeolitic material. Hydrometallurgy 97 46-52. [ Links ]

    SMICIKLAS I, DIMOVIC S and PLECAS I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl. Clay Sci. 35 139-144. [ Links ]

    SPRYNSKYY M, LEBEDYNETS M, TERZYK AP, KOWALCZYK P, NAMIESNIK J and BUSZEWSKI B (2005) Ammonium sorp-tion from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions. J. Colloid Interface Sci. 284 408-415. [ Links ]

    SPRYNSKYY M, BUSZEWSKI B, TERZYK AP and NAMIESNIK J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 304 21-28. [ Links ]

    STYLIANOU M A, HADJICONSTANTINOU MP, INGLEZAKIS VJ, MOUSTAKAS KG and LOIZIDOU MD (2007) Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. J. Hazard. Mater. 143 575-581. [ Links ]

    TAFFAREL R and RUBIO J (2009) On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22 336-343. [ Links ]

    TRGO M, PERIK J and MEDVIDOVIC NV (2006a) A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems. J. Hazard. Mater. B136 938-945. [ Links ]

    TRGO M, PERIK J and MEDVIDOVIC NV (2006b) Investigations of different kinetic models for zinc ions uptake by a natural zeolitic tuff. J. Environ. Manage. 79 298-304. [ Links ]

    WANG S and PENG Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156 11-24. [ Links ]

    WANG X S, HUANG J, HU HQ, WANG J and QIN Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J. Hazard. Mater. 142 468-476. [ Links ]

    ZAMBOULIS D, PATAROUDI SI, ZOUBOULIS KA and MATIS A (2004) The application of sorptive flotation for removal of metal ions. Desalination 162 159-168. [ Links ]