SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

MAMVURA, Tirivaviri A.; LYUKE, Sunny E.; SIBANDA, Vusumuzi  and  YAH, Clarence S.. Immobilisation of yeast cells on carbon nanotubes. S. Afr. j. sci. [online]. 2012, vol.108, n.7-8, pp. 90-97. ISSN 0038-2353.

    1. Pilkington PH, Margaritis A, Mensour NA, Russell I. Fundamentals of immobilized yeast cells for continuous beer fermentation: a review. J Inst Brew. 1998;104:19-31. [ Links ]

    2. Domingues L, Vincente AA, Lima N, Teixeira JA. Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng. 2000;5:288-305. http://dx.doi.org/10.1007/BF02942185 [ Links ]

    3. Stewart GG, Russell I. Brewing science. Toronto: Academic Press; 1981. [ Links ]

    4. Berger M. Ethanol production inside carbon nanotubes [homepage on the Internet]. c2009 [updated 2007 June 08, cited 2009 Aug 03]. Available from http://www.nanowerk.com/spotlight/spotid=2053.php. [ Links ]

    5. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 2004;21:377-397. http://dx.doi.org/10.1016/j.fm.2003.10.005 [ Links ]

    6. O'Connor L. Innovation in the lab: Emerging material could provide the breakthrough that nanotech needs. Global Research Technical Insights. 2009; 2(1), 3 pages. [ Links ]

    7. Briggs DE, Boulton CA, Brookes PA, Stevens R. An outline of brewing: Brewing science and practice. Cambridge: Woodhead Publishing Ltd; 2004. [ Links ]

    8. Van Zandycke S, Siddique R, Smart KA. The role of the membrane in predicting yeast quality. MBAA TQ. 2003;40(3):169-173. [ Links ]

    9. Converti A, Borghi MD, Ferraiolo G, Sommariva C. Mechanical mixing and biological deactivation: The role of shear stress application time. Chem Eng J. 1996;62:155-167. [ Links ]

    10. Firon N, Ofek I, Sharon N. Interaction of mannose-containing oligosaccharides with the fimbrial lectin of Escherichia coli. Biochem Biophys Res Commun. 1982;105:1426-1432. http://dx.doi.org/10.1016/0006-291X(82)90947-0 [ Links ]

    11. Iyuke SE, Mamvura TA, Liu K, Sibanda V, Meyyappan M, Varadan VK. Process synthesis and optimisation for the production of carbon nanostructures. Nanotechnology. 2009;20:375602, 10 pages. [ Links ]

    12. Brányik T, Vicente A, Oliveira R, Teixeira J. Physicochemical surface properties of brewing yeast influencing their immobilisation onto spent grains in a continuous reactor. Biotechnol Bioeng. 2004;88:84-93. http://dx.doi.org/10.1002/bit.20217,PMid:15389484 [ Links ]

    13. Peinado RA, Moreno JJ, Maestre O, Mauricio JC. Use of a novel immobilization yeast system for winemaking. Biotechnol Lett. 2005;27:1421-1424. http://dx.doi.org/10.1007/s10529-005-0939-2, PMid:16215861 [ Links ]

    14. Sakurai A, Nishida Y, Saito H, Sakakibara M. Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. J Biosci Bioeng. 2000;90(5):526-529. PMid:16232903 [ Links ]

    15. Gztop HN, Öztop AY, Karadag E, I§ikver Y, Saraydin D. Immobilisation of Saccharomyces cerevisiae on to acrylamide-sodium acrylate hydrogels for production of ethyl alcohol. Enzyme Microb Technol. 2003;32:114-119. http://dx.doi.org/10.1016/S0141-0229(02)00244-2 [ Links ]

    16. Hussain T, Salhi O, Lematre J, Charpentier C, Bonaly R. Comparative studies of flocculation and deflocculation of Saccharomyces uvarum and Kluyveromyces bulgaricus. Appl Microbiol Biotechnol. 1986;23:269-273. http://dx.doi.org/10.1007/BF00261927 [ Links ]

    17. Nahvi I, Emtiazi G, Alkabi L. Isolation of a flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol. Biomass Bioenergy. 2002;23:481-486. http://dx.doi.org/10.1016/S0961-9534(02)00070-3 [ Links ]

    18. Ross AH, Harrison JS. The yeasts. London: Academic Press, 1970; p. 148156. [ Links ]

    19. Jin Y-L, Speers RA. Flocculation of Saccharomyces cerevisiae. Food Res Int.1999;31:421-440. http://dx.doi.org/10.1016/S0963-9969(99)00021-6 [ Links ]

    20. Jin Y-L, Speers RA. Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem. 2000;58:108-116. [ Links ]

    21. Jin Y-L, Ritcey LL, Speers RAR, Dolphin PJ. Effect of cell surface hydrophobicity, charge and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem. 2001;59:1-9. [ Links ]

    22. Soares EV, Texeira JA, Mota M. Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol. 1994;40:851-857. http://dx.doi.org/10.1139/m94-135, PMid:8000963 [ Links ]

    23. Stratford M. Yeast flocculation: A new perspective. In: Rose AH, Tempest D, editors. Advances in microbial physiology. New York: Academic Press, 1992; p. 1-71. [ Links ]

    24. Gztop HN, Saraydin D, Cetinus S. pH-sensitive chitosan films for baker's yeast immobilization. Appl Biochem Biotechnol. 2002;101:239-249. http://dx.doi.org/10.1385/ABAB:101:3:239 [ Links ]

    25. Speers RA, Tung MA, Durances TD, Stewart GG. Biochemical aspects of yeast flocculation and its measurement: A review. J Inst Brew. 1992;98:293-300. [ Links ]

    26. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR. Yeast flocculation: What brewers should know. Appl Microbiol Biotechnol. 2003;61:197-205. PMid:12698276 [ Links ]

    27. Zhao J, Fleet GH. Degradation of DNA during the autolysis of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2003;30:175-182. PMid:12715255 [ Links ]

    28. Arnold WN. Autolysis in yeast cell envelopes: Biochemistry, biophysics and ultrastructure. New York: CRC Press, 1981; p. 129-137. [ Links ]

    29. Hernawan T, Fleet G. Chemical and cytological changes during the autolysis of yeasts. J Ind Microbiol. 1995;14:440-450. http://dx.doi.org/10.1007/BF01573955, PMid:7662285 [ Links ]

    30. Alexandre H, Guilloux-Benatier M. Yeast autolysis in sparkling wine - A review. Aust J Grape Wine Res. 2006;12:119-127. http://dx.doi.org/10.1111/j.1755-0238.2006.tb00051.x [ Links ]

    31. Hsu JWC, Speers RA, Paulson AT. Modeling of orthokinetic flocculation of Saccharomyces cerevisiae. Biophys Chem. 2001;94:47-58. http://dx.doi.org/10.1016/S0301-4622(01)00236-8 [ Links ]

    32. Taylor NW, Orton WL. Effect of alkaline earth metal salts on flocculence in Saccharomyces cerevisiae. J Inst Brew. 1973;79:294-297. [ Links ]

    33. Dengis PB, Nelissen LR, Rouxhet PG. Mechanisms of yeast flocculation: Comparison of top- and bottom-fermenting strains. Appl Environ Microbiol. 1995;61:718-728. PMid:7574609, PMCid:167332 [ Links ]

    34. Mallouchos A, Reppa P, Aggelis G, Kanellaki M, Koutinas AA, Komaitis M. Grape skins as a natural support for yeast immobilisation. BiotechnolLett. 2002;24:1331-1335. http://dx.doi.org/10.1023/A:1019892232296 [ Links ]

    35. Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett. 2006;28:1515-1525. http://dx.doi.org/10.1007/s10529-006-9132-5, PMid:16937245 [ Links ]

    36. Soares EV, Mota M. Flocculation onset, growth phase and genealogical age in Saccharomyces cerevisiae. Can J Microbiol. 1996;42:539-547. http://dx.doi.org/10.1139/m96-073, PMid:8801005 [ Links ]

    37. Stratford M, Wilson PDG. Agitation effects on microbial cell-cell interactions: A review. Lett Appl Microbiol. 1990;11:1-6. http://dx.doi.org/10.1111/j.1472-765X.1990.tb00122.x, PMid:1366670 [ Links ]

    38. Smit G, Straver MH, Lugtenberg BJJ. Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol. 1992;58(11):3709-3714. PMid:1482191, PMCid:183164 [ Links ]

    39. Straver MH, Aar PC, Van der Smit G, Kijne JW. Determinants of flocculence of brewer's yeast during fermentation in wort. Yeast. 1993;9: 527-532. http://dx.doi.org/10.1002/yea.320090509, PMid:8322515 [ Links ]