SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

KALULA, Asha Saidi  and  NYABADZA, Farai. A theoretical model for substance abuse in the presence of treatment. S. Afr. j. sci. [online]. 2012, vol.108, n.3-4, pp. 96-107. ISSN 1996-7489.

    1. Lineberry TW, Bostwick JM. Methamphetamine abuse: A perfect storm of complications. Mayo Clin Proc. 2006;81:77-84., PMid:16438482 [ Links ]

    2. Plüddemann A, Dada S, Parry C, et al. Monitoring alcohol and substance abuse trends in South Africa. SACENDU Research brief. 2010;13(2):1-16. [ Links ]

    3. Parry CDH, Dewing S, Petersen P, et al. Rapid assessment of HIV risk behavior in drug using sex workers in three cities in South Africa. AIDS Behav. 2009;13(5):849-859., PMid:18324470 [ Links ]

    4. Wechsberg WM, Luseno WK, Karg RS, et al. Alcohol, cannibis, and methamphetamine use and other risk behaviours among Black and Coloured South African women: A small randomized trial in the Western Cape. Int J Drug Policy. 2008;19:130-139., PMid:18207723, PMCid:2435299 [ Links ]

    5. Parry CDH. Substance abuse intervention in South Africa. World Psychiatry. 2005;4:34-35. PMid:16633501, PMCid:1414718 [ Links ]

    6. Rossi C. Operational models for the epidemics of problematic drug use: The Mover-Stayer approach to heterogeneity. Socio Econ Plan Sci. 2004;38:73-90. [ Links ]

    7. Rossi C. The role of dynamic modelling in drug abuse epidemiology. Bull Narc. 2002;LIV:33-44. [ Links ]

    8. Mulone G, Straughan B. A note on heroin epidemics. Math Biosci. 2009;218:138-141., PMid:19563739 [ Links ]

    9. De Alarcon R. The spread of a heroin abuse in a community. Bull Narc. 1969;21:17-22. [ Links ]

    10. Hunt LG, Chambers CD. The heroin epidemics. New York: Spectrum Publications Inc.; 1976. [ Links ]

    11. Mackintosh DR, Stewart GT. A mathematical model of a heroin epidemic: Implications for control policies. J Epidemiol Community Health. 1979;33:299-304. [ Links ]

    12. Sharomi O, Gumel AB. Curtailing smoking dynamics: A mathematical modelling approach. Appl Math Comput. 2008;195:475-499. [ Links ]

    13. White E, Comiskey C. Heroin epidemics, treatment and ODE modelling. Math Biosci. 2007;208:312-324., PMid:17174346 [ Links ]

    14. Burattini MN, Massad E, Coutinho FAB. A mathematical model of the impact of crack-cocaine use on the prevalence of HIV/AIDS among drug users. Math Comput Model. 1998;28:21-29. [ Links ]

    15. Nyabadza F, Hove-Musekwa SD. From heroin epidemics to methamphetamine epidemics: Modelling substance abuse in a South African province. Math Biosci. 2010;225:132-140., PMid:20298703 [ Links ]

    16. Hadeler KP, Castillo-Chavez C. Core group model for disease transmission. Math Biosci. 1995;128:41-55. [ Links ]

    17. Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29-48. [ Links ]

    18. Matlab. Version 7.01. Natick, MA: Mathworks; 2004. [ Links ]

    19. Bhunu CP, Garira W, Mukandavire Z, Magombedze G. Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control. J Theor Biol. 2008;254:633-649., PMid:18644386 [ Links ]

    20. Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004;1:361-404. [ Links ]

    21. Feng Z, Castillo-Chavez C, Capurroe A. A model for tuberculosis with exogenous re-infection. Theor Popul Biol. 2000;57:235-247., PMid:10828216 [ Links ]

    22. Garba S, Gumel A, Bakar M. Backward bifurcation in dengue transmission dynamics. Math Biosci. 2008;215:11-25., PMid:18573507 [ Links ]

    23. Cui J, Mu X, Wan H. Saturation recovery leads to multiple endemic equilibria and backward bifurcation. J Theor Biol. 2008;254:275-283., PMid:18586277 [ Links ]

    24. Sharomi O, Poddler CN, Gumel AB, et al. Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math Biosci. 2007;210:436-463., PMid:17707441 [ Links ]

    25. Dushoff J. Incorporating immunological ideas in epidemiological models. J Theor Biol. 1996;180:181-187., PMid:8759527 [ Links ]

    26. Bhatia NP, Szegö GP. Stability theory of dynamical systems. Berlin: Springer-Verlag; 1970. [ Links ]