SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

BEUKES, J.P.; VAN ZYL, P.G  and  RAS, M. Treatment of Cr(VI)-containing wastes in the South African ferrochrome industry - a review of currently applied methods. J. S. Afr. Inst. Min. Metall. [online]. 2012, vol.112, n.5, pp.347-352. ISSN 2411-9717.

    1. MURTHY, Y.R., TRIPATHY, S.K., and KUMAR, C.R. Chrome ore beneficiation challenges and opportunities - A review. Minerals Engineering, vol. 24, 2011. pp. 375-380. [ Links ]

    2. CRAMER, L.A., BASSON, J., and NELSON, L.R. The impact of platinum production from UG2 ore on ferrochrome production in South African. Journal of the South African Institute of Mining and Metallurgy, October, vol. 104, no. 9, 2004. pp. 517-527. [ Links ]

    3. RIEKKOLA-VANHANEN, M. Finnish expert report on best available techniques in ferrochromium production. The Finnish Environment 314. Helsinki, Finnish Environment Institute, 1999. [ Links ]

    4. ICDA (International Chromium Development Association), Statistical Bulletin, 2008 edition. 2008. [ Links ]

    5. JONES, R. Pyrometallurgy in Southern Africa. 2011. (accessed 1 August 2011). [ Links ]

    6. BEUKES, J.P., Dawson, N.F., and van Zyl, P.G. Theoretical and practical aspects of Cr(VI) in the South African FeCr industry, Journal of The Southern African Institute of Mining and Metallurgy, vol. 110, 2010. pp. 743-750. [ Links ]

    7. PROCTOR, D.M., OTANI, J.M., FINLEY, B.L., PAUSTENBACH, D.J., BLAND, J.A., SPEIZER, N., AND SARGENT, E.V. Is hexavalent chromium carcinogenic via ingestion? A weight-of-evidence review. Journal of Toxicology and Environmental Health, Part A, vol. 65, 2002. pp.701-746. [ Links ]

    8. IARC (International Agency for Research on Cancer), World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 49, Chromium, Nickel and Welding, 1997. [ Links ]

    9. MA, G. AND GARBERS-CRAIG, A.M. A review on the characteristics, formation mechanisms and treatment processes of Cr(VI)-containing pyrometal-lurgical wastes. Journal of the Southern African Institute of Mining and Metallurgy, vol. 106, 2006. pp. 753-763. [ Links ]

    10. MINTEK. Mintek Bulletin, 1993, no. 65, September 1993. [ Links ]

    11. MINTEK. Mintek Bulletin, 1994, no. 71, March 1994. [ Links ]

    12. Mintek. Mintek Bulletin, 1996, no. 95, May 1996. [ Links ]

    13. SHEN, H. and FROSSBERG, E. An overview of recovery of metals from slag. Waste Management, vol. 23, 2003. pp. 939-949. [ Links ]

    14. MASHANYARE, H.P. and GUEST, R.N. The recovery of ferrochrome from slag at Zimasco. Minerals Engineering, vol. 10, 1997. pp.1253-1258. [ Links ]

    15. GIESEKKE, E.W. Mineral based treatment strategies for wastes and effluents. South African Journal of Science, vol. 95, 1999. pp. 367-372. [ Links ]

    16. MA, G., and GARBERS-CRAIG, A.M. Stabilization of Cr(VI) in stainless steel plant dust through sintering using silica-rich. Journal of Hazardous Materials, vol. 169, 2009. pp. 210-216. [ Links ]

    17. MAINE, C.F., SMIT, J.P., and GIESEKKE, E.W. The solid stabilization of soluble wastes generated in the South African ferrochrome industry, Final report to the Water Research Commission, 2005. WRCReport no 942/1/05. [ Links ]

    18. GERICKE, W.A. Environmental aspects of ferrochrome production. Proceedings 7th International Ferroalloys Congress (INFACON XII), Trondheim, Norway, 1995. pp.131-140. [ Links ]

    19. DOBSON, R.S. and BURGESS, J.E. Biological treatment of precious metal refinery wastewater: A review. Minerals Engineering, vol.20, 2007. pp.519-532. [ Links ]

    20. MCBRIDE, C. Rainfall data for Burgersfort, Lydenburg, Brits and Rustenburg. Personal communication. 2009 SA Weather Service. [ Links ]

    21. NIEMELA, P., KROGERUS, H., and OIKARINEN, P. Formation, characterization and utilization of CO-gas formed in ferrochrome smelting. Proceedings 10th International Ferroalloys Congress (INFACON X), Cape Town, South Africa, 2004. pp. 68-77. [ Links ]

    22. MARCH, J. Advanced Organic Chemistry, 4th edn. John Wiley and Sons, USA.,1992. [ Links ]

    23. FENDORF, S.E. and ZASOSKI, R.J. Chromium(III) oxidation by 8-MnO2. 1. Characterization. Environmental Science and Technology, vol. 26, 1992. pp. 79-85. [ Links ]

    24. BARTLETT, R.J. Chromium cycling in soils and water: Links, gaps and methods. Environmental Health Perspectives, vol. 92, 1991. pp. 17-24. [ Links ]

    25. EARY, L.E. and RAI, R. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science and Technology, vol. 21, 1987. pp. 1187-1193. [ Links ]

    26. WAZNE, M., MOON, D.H., JAGUPILLA, S.C., JAGUPILLA, S.C., CHRISTODOULATOS, C., DERMATAS, D., and CHRYSOCHOOU, M. Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide. Geosciences Journal, vol. 11, 2007. pp. 105-110. [ Links ]

    27. SU, C. and LUDWIG, R.D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulphate and sodium dithionite. Environmental Science and Technology, vol. 39, 2005. pp. 6208-6216. [ Links ]

    28. QIN, G., MCGUIRE, M.J., BLUTE, N.K., SEIDEL, C., and LEIGHTON, F. Hexavalent chromium removal by reduction with ferrous sulphate, coagulation, and filtration: A pilot-scale study. Environmental Science and Technology, vol. 39, 2005. pp. 6321-6327. [ Links ]

    29. HE, Y.T., CHEN, C-C., and TRAINA, S.J. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions. Environmental Science and Technology, vol. 38, 2004. pp. 5535-5539. [ Links ]

    30. HWANG, I., BATCHELOR, B., SCHLAUTMAN, M.A., and WANG, R. Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids. Journal of Hazardous Materials, vol. B92, 2002. pp. 143-159. [ Links ]

    31. SCHLAUTMAN, M.A. and HAN, I. Effect of Ph and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research, vol.35, 2001. pp. 1534-1546. [ Links ]

    32. BUERGE, I.J. and HUG, S.J. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science and Technology, vol. 31, 1997. pp. 1426-1432. [ Links ]

    33. SEDLAK, D.L. and CHAN, P.G. Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, vol. 61, 1997. pp. 2185-2192. [ Links ]

    34. FENDORF, S.E. and LI, G. Kinetics of chromate reduction by ferrous iron. Environmental Science and Technology, vol. 30, 1996. pp. 1614-1617. [ Links ]

    35. BEUKES, J.P., PIENAAR, J.J., LACHMANN, G., and GIESEKKE, E.W. The reduction of hexavalent chromium by sulphite in wastewater. Water SA, vol. 25, 1999. pp. 363-370. [ Links ]

    36. BEUKES, J.P., PIENAAR, J.J., and LACHMANN, G. The reduction of hexavalent chromium by sulphate in wastewater - An explanation of the observed reactivity pattern. Water SA, vol. 26, 2000. pp. 393-395. [ Links ]

    37. MUKHOPADHYAY, B., SUNDQUIST, J., and SCHMITZ, R.J. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II). Journal of Environmental Management, vol. 82, 2007. pp. 66-76. [ Links ]

    38. LAKSHMIPATHIRAJ, P., RAJU, G.B., BASARIYA, M.R., PARVATHY, S., and PRABHAKAR, S. Removal of Cr(VI) by electrochemical reduction. Separation and Purification Technology, vol. 60, 2008. pp. 96-102. [ Links ]

    39. TIAN, Y. and YANG, F. Reduction of hexavalent chromium by polypyrrole-modfied steel mesh electrode. Journal of Cleaner Production, vol. 15, 2007. pp. 1415-1418. [ Links ]

    40. MARTINEZ, S.A. and RODRIQUES, M.G. Dynamic modeling of the electrochemical process to remove Cr(VI) from wastewaters in a tubular reactor. Journal of Chemical Technology and Biotechnology, vol. 82, 2007. pp. 582-587. [ Links ]

    41. RUOTOLO, L.A.M., SANTOS-JUNIOR, D.S., and GUBULIN, J.C. Electrochemical treatment of effluents containing Cr(VI). Influence of pH and current on the kinetics. Water Research, vol. 40, 2006. pp. 1555-1560. [ Links ]

    42. RODRIGUEZ, M.G. and MARTINEZ, S.A. Removal of Cr(VI) from wastewaters in a tubular electrochemical reactor. Journal of Environmental Science and Health Part A, vol. 40, 2005. pp. 2215-2225. [ Links ]

    43. RODRIGUEZ-VALADEZ, F., ORTIZ-EXIGA, C., IBANEZ, J.G., ALATORRE-ORDAZ, A., and GUTIERREZ-GRANADOS, S. Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation. Environmental Science and Technology, vol. 39, 2005. pp. 1875-1879. [ Links ]

    44. RUOTOLO, L.A.M. and GUBULIN, J.C. A factorial-design study of the variables affecting the electrochemical reduction of Cr(VI) at polyaniline-modified electrodes. Chemical Engineering Journal, vol. 110, 2005. pp. 113-121. [ Links ]

    45. HUNSOM, M., PRUKSATHORN, K., DAMRONGLERD, S., VERGNES, H., and DUVERNEUIL, P. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modelling of copper reduction. Water Research, vol. 39, 2005. pp. 610-616. [ Links ]

    46. AGUILAR, R., MARTINEZ, S.A., RODRIGUEZ, M.G., and SOTO, G. Process analysis for treatment of industrial plating wastewater: simulation and control approach. Chemical Engineering Journal, vol. 105, 2005. pp. 139-145. [ Links ]

    47. GUZMAN-PANTOJA, J., IBANEZ, J.G., VASQUEZ-MEDRANO, R.C., and OROPEZA - GUZMAN, M.T. Direct electrochemical reduction of hexavalent chromium in a filter-press reactor. Bulletin of Electrochemistry, vol. 20, 2004. pp. 107-114. [ Links ]

    48. BARRERA-DIAZ, C., PALOMAR-PARDAVE, M., ROMERO-ROMO, M., and MARTINEZ, S. Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media. Journal of Applied Electrochemistry, vol. 33, 2003. pp. 61-71. [ Links ]

    49. CHAUDHARY, A.J., GOSWAMI, N.C., and GRIMES, S.M. Electrolytic removal of hexavalent chromium from aqueous solutions. Journal of Chemical Technology and Biotechnology, vol. 78, 2003. pp. 877-883. [ Links ]

    50. VILAR, E.O., CAVALCANTI, E.B., CARVALHO, H.R., and SOUSA, F.B. Cr(VI) electrochemical reduction using RVG 4000 graphite felt as the electrode. Brazilian Journal of Chemical Engineering, vol. 20, 2003. pp. 291-303. [ Links ]

    51. EL-SHOUBARY, Y., SPEIZER, N, SETH, S., and SAVOIA, H. Pilot plant to treat chromium-contaminated groundwater. Environmental Progress, vol. 17, 1998. pp. 209-213. [ Links ]

    52. ABDO, M.S.E. and SEDAHMED, G.G. A new technique for removing hexavalent chromium from waste water and energy generation via galvanic reduction with scrap iron. Energy Conversion and Management, vol. 39, 1998. pp. 943-951. [ Links ]

    53. VLYSSIDES, A.G. and ISRAILIDES, C.J. Detoxification of tannery waste liquors with an electrolysis system. Environmental Pollution, vol. 97, 1997. pp. 147-152. [ Links ]

    54. SANDERS, C.C. Electrochemical reduction of Cr(VI) in the decontamination process ELDECON. Waste Management, vol. 16, 1996. pp. 683-689. [ Links ]

    55. ECODOSE. 2011. (accessed 4 August 2011) [ Links ]

    56. GERICKE, W.A. Bacterial reduction of hexavalent Cr: A viable environmental solution to the treatment of effluent from A FeCr smelter. Proceedings 9th International Ferroalloys Congress (INFACON IX), Quebec City, Canada, 2001. pp. 438-443. [ Links ]