SciELO - Scientific Electronic Library Online

 
vol.111 issue3 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

J. S. Afr. Inst. Min. Metall. vol.111 n.3 Johannesburg  2011

 

TRANSACTION PAPER

 

Titanium production via metallothermic reduction of TiCl4in molten salt: Problems and products

 

 

D.S. van VuurenI; S.J. OosthuizenI; M.D. HeydenrychII

IMaterials Science and Manufacturing, CSIR, Pretoria
IIDepartment of Chemical Engineering, University of Pretoria

 

 


SYNOPSIS

Industrial production of titanium occurs via the batch-wise reduction of titanium tetrachloride (TiCl4) with a reducing metal, being magnesium in the Kroll process, or sodium in the Hunter process. In the search for low cost titanium, the CSIR is developing a continuous process to produce titanium powder directly via metallothermic reduction of TiCl4 in molten salt, dubbed the CSIR-Ti process.
The move to a continuous process has been attempted by a number of organizations, but was until now always met with failure, due in no small part to challenges inherent in the process chemistry. The reaction between TiCl4 and the reducing metal can occur directly, when TiCl4 or any titanium sub-chlorides present, comes into contact with suspended or dissolved reducing metal. The reaction can also occur indirectly, without any physical contact between the reacting species, via an electronically mediated mechanism. The reaction mechanism via electronic mediation can cause TiCl4 to react at the outlet of the feed port, rapidly causing blockages of the TiCl4 feed line. The electrical conductivity of the metal reactor can also cause the electronically mediated reaction to favour the formation of titanium sponge on the reactor walls and internals, rather than titanium powder.
Various methods were investigated to overcome the problem of blockages in the TiCl4 feed line, e.g. mechanical removal, sonic velocities, dilution of the TiCl4 and the use of ceramic feed lines.
This article discusses problems experienced with the continuous feeding of reagents, and various methods attempted are shown and discussed. Information is also given on the morphology, chemical composition and suitability of the final titanium powder for powder metallurgical application as presently produced by the CSIR-Ti process.

Keywords: Titanium dioxide, titanium nitride, carbo-thermic reduction, ilmenite, slag, tunnel kiln, residence time


 

 

“Full text available only in PDF format”

 

 

References

1. VAN VUUREN, D.S. A Critical Evaluation of Processes to Produce Primary Titanium, Journal of The Southern African Institute of Mining and Metallurgy, vol. 109, August 2009, pp. 455-461.         [ Links ]

2. TZ MINERALS INTERNATIONAL AND EHK TECHNOLOGIES. Ti-Metal: The Global Titanium Metal Industry, 2007, p. 171.         [ Links ]

3. EHK TECHNOLOGIES. Summary of emerging titanium cost reduction technologies, A study for US Department of Energy and Oak Ridge National Laboratory, Subcontract 4000023694. 2003.         [ Links ]

4. FROES, F.H. Developments in titanium P/M, University of Idaho, www.webs1.uidaho.edu/imap/MPR%20Paper.pdf#search=%22%22Developments%20in%20Titanium%20P%2FM%22%22. 1 September 2006.         [ Links ]

5. SUZUKI, R.O., HARADA, T.N., MATSUNAGA, T., DEURA, T.N., and ONO, K. Titanium Powder Prepared by Magnesiothermic Reduction of Ti2+ in Molten Salt, Metallurgical and Materials Transactions, vol. 30B, June 1999, p. 403.         [ Links ]

6. WINTER, C.H. Production of Metals, US Patent 2,607,674, 19 Aug. 1952.         [ Links ]

7. WHITE, J.C. and ODEN, L.L. Continuous Production of Granular Ti, Zr and Hf or Their Alloy Products, US Patent 5,259,862, 9 Nov. 1993.         [ Links ]

8. ARMSTRONG, D.R., BORYS, S.R., and ANDERSON, R.P. Titanium and Titanium Alloy, US Patent 7,445,658, 4 Nov. 2008.         [ Links ]

9. SEON, F. and NATAF, P. Production of Metals by Metallothermia, US Patent 4,725,312, 16 Feb. 1988.         [ Links ]

10. KELLER, W.H and ZONIS, I.S. Method of Producing Titanium, US Patent 2,846,303, 5 August 1958.         [ Links ]

11. FINLAY, W.L. (Chairman) Titanium: Past, Present and Future, Publication NMAB-392, National Academy Press, Washington D.C., p. 208 http://www.nap.edu/openbook.php?record_id=1712&page=R1 [7 January 2010]. 1993.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License