SciELO - Scientific Electronic Library Online

 
vol.109 issue10 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

J. S. Afr. Inst. Min. Metall. vol.109 n.10 Johannesburg Oct. 2009

 

TRANSACTION PAPER

 

A Mintek perspective of the past 25 years in minerals bioleaching

 

 

M. Gericke; J.W. Neale; P.J. van Staden

Mintek Biotechnology Division, Randburg, South Africa

 

 


SYNOPSIS

The microbial leaching of metal sulfides is now an established biotechnological technology. Over the past 25 years, refinements in the engineering design of bioleaching processes have paralleled advances in our understanding of the diversity and role of the micro-organisms driving the process and the mechanisms by which micro-organisms enhance metal sulfide oxidation. Commercial success started with the treatment of refractory gold concentrates using mesophilic micro-organisms, followed by the development of tank bioleaching processes for the treatment of base metal concentrates. This was, initially, a mesophilic process with limited potential for recovery of copper from chalcopyrite concentrates due to slow rates and low copper extractions. The exploitation of thermophiles represents a major breakthrough in the development of bioleaching technology for the treatment of chalcopyritecontaining ores and concentrates. This development also opened the route to heap bioleaching of chalcopyrite ores, which is now a major focus of research programmes and piloting campaigns. This paper reviews the historical development of minerals bioleaching processes and gives an update on the current status of commercial tank and heap bioleach operations around the world.


 

 

“Full text available only in PDF format”

 

 

References

1. CONCHA, A., OYARZUN, R., LUNAR, R., and SIERRA, J. Over a century of bioleaching copper sulphides at Andacollo. Min. Mag. (Lond.), Nov. 1991. pp. 324-327.         [ Links ]

2. LAWRENCE, R.W. and POULIN, R. Biooxidation of copper sulphides. EPD Congress 1996. Warren, G.W. (ed.). Warrendale, The Minerals, Metals & Materials Society, 1996. pp. 893-906.         [ Links ]

3. RAWLINGS, D.E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem., vol. 76, no. 4. 2004. pp. 847-859.         [ Links ]

4. COTO, O., BALLESTER, A., BLÁZQUEZ, M.L., and GONZÁLEZ, F. Bioleaching of a Cuban copper concentrate in the presence of silver. Biorecovery, vol. 2. 1993. pp. 121-140.         [ Links ]

5. MUÑOZ, J.A., GONZÁLEZ, F., BLÁZQUEZ, M.L., and BALLESTER, A. A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy, vol. 38, 1995. pp. 39-57.         [ Links ]

6. VAN NIEKERK, J., and VAN ASWEGEN, P.C. The Biox® process: current status of operating plants and future developments. [Http://www.bioxgf.co.za/content/publications/pdfs/Current%20Status%20of%20Operating%20BIOX%20Plants%20and%20Future%20Developments.pdf]. Undated. 11 pp.         [ Links ]

7. READETT, D.J. Straits Resources Limited and the industrial practice of copper bioleaching in heaps. Australasian Biotechnol., vol. 11, no. 6. 2001. pp. 30-31.         [ Links ]

8. NEALE, J.W., ROBERTSON, S.W., MULLER, H.H., and GERICKE, M. Integrated Piloting of a thermophilic bioleaching process for the treatment of a lowgrade nickel-copper sulphide concentrate. Proceedings of the SAIMM Southern African Hydrometallurgy Conference 2009. Johannesburg, The Southern African Institute Of Mining and Metallurgy, 2009. pp. 119-154.         [ Links ]

9. MILLER, P.C., CORRANS, I.J., and SOUTHWOOD, A.J. Bacterial heap leaching of low-grade nickel material. Mintek 50, Proceedings of the International Conference on Mineral Science and Technology. Haughton, L.F. (ed.). vol. 1. Randburg, Mintek, 1985. pp. 341-352.         [ Links ]

10. NEALE, J.W., PINCHES, A., And DEEPLAUL, V. Mintek-Bactech's bacterialoxidation technology for refractory gold concentrates: Beaconsfield and beyond. J. S.Afr. Inst. Min. Metall., vol. 100, no. 7. 2000. pp. 415-421.         [ Links ]

11. MILLER, P., JIAO, F., and WANG, J. The bacterial oxidation (BACOX) plant at Laizhou, Shandong Province, China - the first three years of operation. Proceedings of the Bac-Min 2004 Conference. Carlton, The Australian Institute of Mining and Metallurgy, 2004.         [ Links ]

12. KLAUBER, C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int. J. Miner. Process., vol. 86, 2008. pp. 1-17.         [ Links ]

13. GERICKE, M., MULLER, H.H., NEALE, J.W., NORTON, A.E., and CRUNDWELL, F.K. Inoculation of heap-leaching operations. Proceedings of the 16th International Biohydrometallurgy Symposium. Harrison, S.T.L., Rawlings, D.E. and Petersen, J. (eds.). Cape Town, Compress, 2005. pp. 255-264.         [ Links ]

14. WATLING, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review. Hydrometallurgy, vol. 84, 2006.pp. 81-108.         [ Links ]

15. VAN STADEN, P.J. Base metals heap leaching applications and process parameters. Base Metals 2007: The Fourth Southern African Conference on Base Metals. Johannesburg, The Southern African Institute of Mining and Metallurgy, 2007. pp. 321-327.         [ Links ]

16. VAN STADEN, P.J. Heap leach research at Mintek. ALTA 2008 Copper. Melbourne, ALTA Hydrometallurgical Services, 2008. 13 pp.         [ Links ]

17. ROBERTSON, S.W., And VAN STADEN, P.J. The progression of metallurgical testwork during heap leach design. The SAIMM Southern African Hydrometallurgy Conference 2009. Johannesburg, The Southern African Institute of Mining and Metallurgy, 2007. pp. 31-42.         [ Links ]

18. VAN STADEN, P.J., ROBERTSON, S.W., GERICKE, M., NEALE, J.W., and SEYEDBAGHERI, A. Maximizing The value derived from laboratory test work towards heap leaching design. The Fifth Southern African Base Metals Conference 2009, Johannesburg, The Southern African Institute of Mining and Metallurgy, 2009. 7 pp.         [ Links ]

19. VAN STADEN, P.J., SHAIDAEE, B., and YAZDANI, M. A collaborative plan towards the heap bioleaching of low grade chalcopyritic ore from a new Iranian mine. Proceedings of the 16th International Biohydrometallurgy Symposium. Harrison, S.T.L., Rawlings, D.E. and Petersen, J. (eds.). Cape Town, Compress, 2005. pp. 115-123.         [ Links ]

20. ROBERTSON, S.W., VAN STADEN, P.J., VERCUIL, A., GLOVER, G., And SHAIDAEE, B. Heap bioleaching of low-grade chalcopyrite ore from the Darehzare deposit. ALTA 2007 Copper. Melbourne, ALTA Hydrometallurgical Services, 2006. 13 pp.         [ Links ]

21. BRIERLEY, C.L. Mining Biotechnology: Research to commercial development and beyond. Rawlings, D.E. (ed.), Biomining: Theory, Microbes and Industrial Processes. Springer, Berlin, 1997. pp. 3-16.         [ Links ]

22. NORRIS, P.R. Acidophilic diversity in mineral sulphide oxidation.Rawlings, D.E. and Johnson, D.B. (eds.), Biomining. Springer, Berlin, 2007. pp. 199-212.         [ Links ]

23. KELLY, D.P., and WOOD, A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol., vol. 50, 2000. pp. 511-516.         [ Links ]

24. RAWLINGS, D.E., TRIBUTSCH, H., and HANSFORD, G.S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidising bacteria in many commercial processes for the bio-oxidation of pyrite and related ores. Microbiology, vol. 145, 1999. pp. 5-13.         [ Links ]

25. RAWLINGS, D.E. Characteristics and adaptability of iron- and sulfuroxidizing microorganisms used for the recovery of metals from minerals and their concentrates, Microbial Cell Factories, vol. 5, 2005. pp. 4-13.         [ Links ]

26. SCHIPPERS, A. Microorganisms involved in bioleaching and nucleic acidbased molecular methods for their identification and quantification. Donati, E.R., Sand, W. (eds.), Microbial Processing of Metal Sulfides. Springer Dordrecht, The Netherlands, 2007. pp. 3-33.         [ Links ]

27. RAWLINGS, D.E. and JOHNSON, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology, vol. 153, 2007. pp. 315-324.         [ Links ]

28. JOHNSON, D.B., and HALLBERG, K.B. Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-organisms. Adv. Microb. Phys., vol. 54, 2009. pp. 201-255.         [ Links ]

29. JOHNSON, D.B., and HALLBERG, K.B. Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. Rawlings, D.E. and Johnson, D.B. (eds.), Biomining. Springer, Berlin, 2007. pp. 237-257.         [ Links ]

30. ROSSI, G. Biohydrometallurgy: A sustainable technology in evolution. Proceedings of the 15th International Biohydrometallurgical Symposium. Tsezos, M., Remoudaki, E., and Hatzikioseyian, A. (eds.) Athens, Greece. 2003. pp. 1-21.         [ Links ]

31. OKIBE, N., GERICKE, M., HALLBERG, K.B., and JOHNSON, D.B. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl. Env. Microbiol., vol. 69, 2003. pp. 1936-1943.         [ Links ]

32. DINKLA, I.J.T., GERICKE, M., GEURKINK, B.K. and HALLBERG, K.B. Acidianus brierley is the dominant thermoacidophile in a bioleaching community processing chalcopyrite containing concentrates At 70°C. Adv. Mat. Res.,vol. 71-73, 2009. pp. 67-70.         [ Links ]

33. MIKKELSEN, D., KAPPLER, U., MCEWAN, A.G., and SLY, L. Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Env. Microbiol., vol. 8, 2006. pp. 2050-2055.         [ Links ]

34. RAWLINGS, D.E., DEW, D., and DU PLESSIS, C. Biomineralization of metalcontaining ores and concentrates. Trends In Biotechnology, vol. 21, 2003. pp. 38-44.         [ Links ]

35. DAS, A., MODAK, J.M., and NATARAJAN, K.A. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Min. Eng., vol.10, 1997. pp. 743-749.         [ Links ]

36. DOPSON, M., BAKER-AUSTIN, C., KOPPINEEDI, P.R., AND BOND, P.L. Growth in sulphidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology, vol.149, 2003. pp. 1959-1970.         [ Links ]

37. GERICKE, M., MULLER, H.H., VAN STADEN, P.H., AND PINCHES, A. Development of a tank bioleaching process for the treatment of complex Cu-polymetallic concentrates. Hydrometallurgy, vol. 94, 2008. pp. 23-28.         [ Links ]

38. RAWLINGS, D.E. Adaptability of Biomining Microorganisms to industrial processes. Rawlings, D.E. and Johnson, D.B. (eds.), Biomining. Springer, Berlin, 2007. pp. 177-198.         [ Links ]

39. JEREZ, C.A. The use of genomics, proteomics and other OMICS technologies for the global understanding of biomining microorganisms. Hydrometallurgy, vol. 94, 2008. pp. 162-169.         [ Links ]

40. VALENZUELA, L., CHIB, A. BEARD, S., ORELLA, A., GUILIANIA, N., SHABANOWITZ, J., HUNT, D.F., and JEREZ, C.A. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology Advances, vol. 24, 2006. pp. 197-211.         [ Links ]

41. HANSFORD, G.S. Travels through bioleaching. Proceedings of the 16th International Biohydrometallurgy Symposium. Harrison, S.T.L., Rawlings, D.E. and Petersen, J. (eds.). Cape Town, Compress, 2005. pp. xxvii-xxxii.         [ Links ]

42. MISHRA, D., KIM, D.-J., AHN, J.-G., and RHEE, Y.-H. Bioleaching: A Microbial Process of Metal Recovery. A Review. Metals and Materials International, vol. 11, 2005. pp. 249-256.         [ Links ]

43. HANSFORD, G.S. Recent developments in modelling the kinetics of bioleaching. Rawlings, D.E. (ed.), Biomining: Theory, Microbes and Industrial Processes. Springer, Berlin, 1997. pp. 153-175.         [ Links ]

44. ROHWERDER, T., GEHRKE, T, KINZLER, K., and SAND, W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., vol. 63, 2003. pp. 239-248.         [ Links ]

45. SCHIPPERS, A., and SAND, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl. Environ. Microbiol., vol. 65, 1999. pp. 319-321.         [ Links ]

46. ACEVEDO, F. The use of bioreactors in biomining processes. EJB Electronic J. Biotechnol., vol. 3, no. 3. 2000. pp. 1-11.         [ Links ]

47. ROSSI, G. The design of bioreactors. Hydrometallurgy, vol. 59, 2001. Pp. 217-231.         [ Links ]

48. PINCHES, A., CHAPMAN, J.T., TE RIELE, W.A.M., and VAN STADEN, M. The performance of bacterial leach reactors for the pre-oxidation of refractory gold-bearing sulphide concentrates. Biohydrometallurgy: Proceedings of the International Biohydrometallurgy Symposium. Norris, P. and Kelly, D.P. (eds.). Kew, Antony Rowe Limited, 1987. pp. 329-344.         [ Links ]

49. CHAPMAN, C.M., NIENOW, A.W., COOKE, M., and MIDDLETON, J.C. Particle-gasliquid mixing in stirred vessels. Part III: three phase mixing. Chem. Eng. Res. Des., vol. 61, 1983. pp. 167-181.         [ Links ]

50. DEW, D.W. and GODFREY, M.W. Sao Bento Biox reactor. Colloquium: Bacterial Oxidation. Johannesburg, The Southern African Institute Of Mining And Metallurgy, 1991. 20 pp.         [ Links ]

51. OLDSHUE, J.Y. Fluid mixing In 1989. Chem. Eng. Prog., vol. 85, no. 5. 1989. pp. 33-42.         [ Links ]

52. GREENHALGH, P., RILEY, R.P., and BAGULEY, W. Development of the VELMIX bio-reactor. Proceedings of the Randol Gold Forum '90. Golden, Randol International Limited, 1990. pp. 115-121.         [ Links ]

53. RILEY, R.P., BAGULEY, W., and GREENHALGH, L.P.H. Development of the VELMIX bio-oxidation reactor. International Deep Mining Conference: Innovations in Metallurgical Plant. Johannesburg, The Southern African Institute Of Mining and Metallurgy, 1990. pp. 131-140.         [ Links ]

54. RILEY, R.P., BAGULEY, W., and GREENHALGH, L.P.H. Development of the BX04 impeller system for bio-oxidation reactors. Proceedings of the Randol Gold Forum '92. Golden, Randol International Limited, 1992. pp. 181-190.         [ Links ]

55. BOUQUET, F., and MORIN, D. BROGIM: A new three-phase mixing system -testwork and scale-up. Proceedings Of the 16th International Biohydrometallurgy Symposium. Harrison, S.T.L., Rawlings, D.E. and Petersen, J. (eds.). Cape Town, Compress, 2005. pp. 173-182.         [ Links ]

56. MILLER, D.M. Effect of temperature on BIOX operations. Colloquium: Bacterial Oxidation. Johannesburg, The Southern African Institute of Mining and Metallurgy, 1991. 18 pp.         [ Links ]

57. PINCHES, T., NEALE, J., HUBERTS, R., and DEMPSEY, P. Development of the Mintek bacterial oxidation process (MINBAC). Proceedings of the Randol Gold Forum '93. Golden, Randol International Limited, 1993. pp. 221-228a.         [ Links ]

58. PINCHES, A., HUBERTS, R., NEALE, J.W., and DEMPSEY, P. The MINBAC bacterial-oxidation process. Xvth CMMI Congress. Johannesburg, The Southern African Institute of Mining and Metallurgy, 1994. pp. 377-392.         [ Links ]

59. DEMPSEY, P., HUMAN, P., PINCHES, A., and NEALE, J.W. Bacterial oxidation at Vaal Reefs. International Deep Mining Conference: Innovations In Metallurgical Plant. Johannesburg, The Southern African Institute of Mining and Metallurgy, 1990. pp. 111-123.         [ Links ]

60. NEALE, J.W., PINCHES, A., MULLER, H.H., HANNWEG, N.H., and DEMPSEY, P. Long-term bacterial oxidation pilot plant operation at Mintek and Vaal Reefs. Colloquium: Bacterial Oxidation. Johannesburg, The Southern African Institute of Mining and Metallurgy, 1991. 25 pp.         [ Links ]

61. NEALE, J.W., and PINCHES, A. Determination of gas liquid mass-transfer and solids-suspension parameters in mechanically-agitated three-phase slurry reactors. Miner. Eng., vol. 7, no's. 2/3. 1994. pp. 389-403.         [ Links ]

62. OOSTERHUIS, N.M.G., and KOSSEN, N.W.F. Oxygen transfer in a production scale bioreactor. Chem. Eng. Res. Des., vol. 61, 1983. pp. 308-312.         [ Links ]

63. OOSTERHUIS, N.M.G., and KOSSEN, N.W.F. Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotech. Bioeng., vol. 26. 1984. pp. 546-550.         [ Links ]

64. ZWIETERING, T.N. Suspending of solid particles in liquid by agitators. Chem. Eng. Sci., vol. 8, 1958. pp. 244-253.         [ Links ]

65. NEALE, J.W., PINCHES, A., KRUGER, P.P., and VAN STADEN, P.J. Copper bioleaching. ALTA 1996 Copper Hydrometallurgy Forum. Melbourne, ALTA Hydrometallurgical Services, 1996. 27 pp.         [ Links ]

66. WATLING, H.R. The bioleaching of nickel-copper sulfides. Hydrometallurgy, vol. 91, 2008. pp. 70-88.         [ Links ]

67. NICHOLSON, H.M., LUNT, D.J., RITCHIE, I.C., and MARAIS, H.J. The design of the Sansu concentrator and BIOX® facility. Xvth CMMI Congress. Johannesburg, The Southern African Institute of Mining and Metallurgy, 1994. pp. 393-402.         [ Links ]

68. BRIERLEY, C.L., and BRIGGS, A.P. Selection and sizing of biooxidation equipment and circuits. Mineral Processing Plant Design, Practice, and Control: Proceedings. Mular, A.L., Halbe, D.N., and Barratt, D.J. (eds.). vol. 2. The Society For Mining, Metallurgy, and Exploration, 2002. pp. 1540-1568.         [ Links ]

69. BATTY, J.D., and POST, T.A. Bioleach reactor development and design. ALTA 1999 Nickel/Cobalt Pressure Leaching & Hydrometallurgy Forum. Melbourne, ALTA Hydrometallurgical Services, 1999. 16 pp.         [ Links ]

70. BATTY, J.D., and RORKE, G.V. Development and commercial demonstration of the BioCOP Thermophile Process. Hydrometallurgy, vol. 83, 2006. pp. 83-89.         [ Links ]

71. VAN NIEKERK, J. Recent advances in BIOX® Technology. Hydrometallurgy Conference 2009. Johannesburg, The Southern African Institute of Mining and Metallurgy, 2009. pp. 167-176.         [ Links ]

72. BRIERLEY, J.A., and BRIERLEY, C.L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, vol. 59, 2001. pp. 233-239.         [ Links ]

73. BRIERLEY, C.L. How will biomining be applied in future? Trans. Nonferrous Met. Soc. China, vol. 18, 2008. pp. 1302-1310.         [ Links ]

74. BRIERLEY, J.A. A Perspective on developments in biohydrometallurgy. Hydrometallurgy, vol. 94, 2008. pp. 2-7.         [ Links ]

75. BACTECH. Technology overview. [http://www.bactech.com/green/overview.asp]. Undated.         [ Links ]

76. POLYMETAL. Polymetal announces acquisition of Mayskoye gold deposit in consortium with a group of Russian investors for total consideration of Us$105 million. Press release. [http://www.polymetal.ru/en/242/4175]. 29 April 2009.         [ Links ]

77. SOVMEN, V.K., BELYI, A.V., DANNEKER, M.Y., GISH, A.A., and TELEUTOV, A.N. Biooxidation of refractory gold sulfide concentrate of Olympiada deposit. Adv. Mater. Res., vol. 71-73, 2009. pp. 477-480.         [ Links ]

78. PAVLIDES, A.G. and FISHER, K.G. The Kasese cobalt project. Extraction Metallurgy Africa '98. Johannesburg, The South African Institute of Mining and Metallurgy, 1998. 20 pp.         [ Links ]

79. VAN STADEN, P.J. The Mintek/Bactech copper bioleach process. ALTA Copper Hydrometallurgy Forum. Brisbane, 19-21 Oct., 1998.         [ Links ]

80. MORIN, D.H.R., and D'HUGUES, P. Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application. Rawlings, D.E. and Johnson, D.B. (eds.), Biomining. Springer-Verlag, Berlin, 2007. pp. 35-54        [ Links ]

81. MUÑOZ, P.B., MILLER, J.D., and WADSWORTH, M.E. Reaction mechanism for the acid ferric sulphate leaching of chalcopyrite. Metallurgical Transactions B, (June), 1979. pp. 55-65.         [ Links ]

82. STOTT, M.B., WATLING, H.R., FRANZMANN, P.D., and SUTTON, D. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Min. Eng., vol. 13, 2000. pp. 1117-1127.         [ Links ]

83. SANDSTROM, Å′ ., SHCHUKAREV, A., and PAUL, J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Min. Eng., vol.18, 2005. pp. 505-515.         [ Links ]

84. HACKL, R.P., DREISINGER, D.B., PETERS, E., And KING, J.A. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, vol. 39, 1995. pp. 25-48.         [ Links ]

85. PARKER, A., KLAUBER, C., KOUGIANUS, A., WATLING, H.R., and VAN BRONSWIJK, W. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy, vol. 71, 2003. pp. 265-276.         [ Links ]

86. GERICKE, M., and PINCHES, A. Bioleaching of copper sulphide concentrate using extreme thermophilic bacteria. Min. Eng., vol. 12, 1999. pp. 893-904.         [ Links ]

87. GERICKE, M., PINCHES, A., and VAN ROOYEN, J.V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. Int. J. Min. Process., vol. 62, 2001. pp. 243-255.         [ Links ]

88. HIROYOSHI, N., MIKI, H., HIRAJIMA, T., and TSUNEKAWA, M., Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy, vol. 60, 2001. pp. 185-197.         [ Links ]

89. THIRD, K.A., CORD-RUWISCH, R., and WATLING, H.R. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol. Bioeng., vol. 78, 2002. pp. 433-441.         [ Links ]

90. PINCHES, A., MYBURGH, P.J., and VAN DER MERWE, C. Process for the rapid leaching of chalcopyrite in the absence of catalysts. US Patent 6,277,341: Appl.: 3 March 1997: Acc. 21 August 2001.         [ Links ]

91. PINCHES, A., GERICKE, M., and VAN ROOYEN, J.V. A method of operating a bioleach process with control of redox potential. Patent WO 01/31072 A1: Appl.: 28 October 1999: Acc. 3 May 2001.         [ Links ]

92. GERICKE, M., GOVENDER, Y., and PINCHES, A. Advances in tank bioleaching of low-grade chalcopyrite concentrates. Adv. Mat. Res., vol. 71-73, 2009. pp. 361-364.         [ Links ]

93. AHONEN, L., And TUOVINEN, O.H. Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks. Hydrometallurgy, vol. 24, 1990. pp. 219-236        [ Links ]

94. GÓMEZ, E., BALLESTER, A., BLÁZQUEZ, M.L., and GONZÁLEZ, F. Silvercatalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy, vol. 51, 1999. pp. 37-46.         [ Links ]

95. RHODES, M., DEEPLAUL, V., and VAN STADEN, P.J. Bacterial oxidation of Mt Lyell concentrates, ALTA Copper 1998: (Brisbane, Qld.), ALTA Metallurgical Services, Melbourne, 1999. 24 pp.         [ Links ]

96. GERICKE, M., MULLER, HH., VAN STADEN, P.J., and PINCHES, A. Development of a tank bioleaching process for the treatment of complex Cu-polymetallic concentrates. Hydrometallurgy, vol. 94, 2008. pp. 23-28.         [ Links ]

97. MIER, J.L., GOMEZ, C., BALLESTER, A., BLAZQUEZ, M.L. and GONZALEZ, F. Effect of silver and bismuth on bioleaching of copper sulphide concentrates with thermophilic microorganisms. Hydrometallurgy 94, International Symposium, Institution Of Mining And Metallurgy, Society Of Chemical Industry, Cambridge, July 11-15, 1994. p. 369.         [ Links ]

98. DOMIC, E.M. A review of the development and current status of copper bioleaching operations in Chile: 25 Years of successful commercial implementation. Rawlings, D.E. and Johnson, D.B. (eds.), Biomining. Springer-Verlag, Berlin, 2007. pp. 81-95        [ Links ]

99. CLARK, M.E., BATTY, J.D., VAN BUUREN, C.B., DEW, D.W., and EAMON, M.E. Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy, vol. 83, 2006. pp. 3-9.         [ Links ]

100. VAN STADEN, P.J., GERICKE, M., and CRAVEN, P.M. Minerals biotechnology: Trends, opportunities and challenges. Hydrometallurgy 2008, Phoenix, Arizona, 17-20 Aug. 2008.         [ Links ]

101.MORIN, D., PINCHES, T., HUISMAN, J., FRIAS, C., NORBERG, A., and FORSSBERG, E. Progress after three years of BioMinE-research and technological development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources. Hydrometallurgy, vol. 94, 2008. pp. 58-68.         [ Links ]

102. SCHNELL, H.A. Bioleaching of copper. Rawlings, D.E. (ed.), Biomining: Theory, Microbes and Industrial Processes. Springer, Berlin, 1997. pp. 21-43.         [ Links ]

103. GALLEGUILLOS, P., REMONSELLEZ, F., GALLEGUILLOS, F., GUILIANI, N., CASTILLO, D., and DEMERGASSO, C. Identification of differentially expressed genes in an industrial bioleaching heap processing low-grade copper sulphide ore elucidated by RNA arbitrarily primed polymerase chain reaction. Hydrometallurgy, vol. 94, 2008. pp. 148-154.         [ Links ]

104.DIXON, D.G and PETERSEN, J. Modelling the Dynamics of Heap Bioleaching for Process Improvement and Innovation. Hydro-Sulfides 2004: Intl. Colloquium on Hydrometallurgical Processing of Copper Sulfides (Santiago). University Of Chile, Santiago, pp. 13-45.         [ Links ]

105.HOLMES, D.S. Review of International Biohydrometallurgy Symposium, Frankfurt, 2007. Hydrometallurgy, vol. 92, pp. 69-72.         [ Links ]

106. RIEKKOLA-VANHANEN, M. Talvivaara black schist bioheap leaching demonstration plant. Adv. Mat. Res., vols. 20-21, 2007.pp. 30-33.         [ Links ]

107.WAKEMAN, K., AUVINEN, H., and JOHNSON, D.B. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulphide ore. Biotechnol. Bioeng., vol. 101, 2008. pp. 739-750.         [ Links ]

108. CHADWICK, J. Bio/hydro-Different metallurgical options. Int. Mining, May, 2007. pp. 41-44.         [ Links ]

109. PRADHAN N., NATHSARMA K.C., SRINIVASA RAO K., SUKLA L.B., and MISHRA B.K. Heap Bioleaching of Chalcopyrite: A Review. Min. Eng., vol. 21, pp. 355-365.         [ Links ]

110.HARVEY T.J., and BATH M. The Geobiotics GEOCOAT Technology-progress and challenges. Rawlings, D.E. and Johnson, D.B (eds.), Biomining. Springer-Verlag, Berlin, 2007. pp. 97-112.         [ Links ]

111. PEACY, J., GUO, X.J., and ROBLES, E. Copper Hydrometallurgy-Current Status, Preliminary Economics, Future Direction and Positioning versus Smelting. Proceedings: International Symposium Copper 2003-Cobre 2003, Hydrometallurgy Of Copper, vol. vi.         [ Links ]

112.DEMERGASSO, C., GALLEGUILLOS, P., ESCUDERO, L., ZEPEDA, V., CASTILLO, D., and CASAMAYOR, E. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy, vol. 80, 2005. pp. 241-253.         [ Links ]

113. CORAM-ULIANA, N.J., VAN HILLE, R.P., KOHR, W.J., and HARRISON, S.T.L. Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy, vol. 83, pp. 237-244.         [ Links ]

114. REMONSELLEZ, F., GALLEGUILLOS, F., JANSE VAN RENSBURG, S., RAUTENBACH, G.F., GALLEGUILLOS, P.,CASTILLO, D., and DEMERGASSO, C. Monitoring the microbial community inhabiting a low-grade copper sulphide ore by Quantitative Real-Time PCR analysis of 16s rRNA genes. Adv. Mat. Res. vols. 20-21, 2007. pp. 539-542.         [ Links ]

115. JOHNSON, D.B. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates. Trans. Nonferrous Met. Soc. China, vol.18, 2008. pp. 1367-1373        [ Links ]

116. LINDSTRÖM, B., SANDSTRÖM, A., AND SUNDKVIST, J.-E. Two-stage bioleaching of sulphidic material containing arsenic. U.S. Pat. 6,461,577 B1. 8 Oct. 2002.         [ Links ]

117. LINDSTRÖM, E.B., SANDSTRÖM, A., and SUNDKVIST, J.-E. A sequential two-step process using moderately and extremely thermophilic cultures for biooxidation of refractory gold concentrates. Hydrometallurgy, vol. 71, 2003. pp. 21-30.         [ Links ]

118.MORIN, D.H.R. BioMinE: An integrated project for developing biohydrometallurgy in Europe-executive summary of its activities and outputs after three years. Trans. Nonferrous Met. Soc. China, vol. 18, 2008. pp. 1328-1335.         [ Links ]

119.WADDEN, D. and GALLANT, A. The in-place leaching of uranium at Denison Mines. Can. Metall. Q., vol. 24, no. 2. 1985. pp. 127-134.         [ Links ]

120. KOTZE, M.H., GREEN, B.R., NEALE, J.W. and SWANEPOEL, L. Mintek's re-entry into uranium research and development. ALTA 2006 Uranium. Melbourne, ALTA Hydrometallurgical Services, 2006. 15 pp.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License