SciELO - Scientific Electronic Library Online

 
vol.22 número2New heuristics for minimising total completion time and the number of tardy jobs criteria on a single machine with release timeA hybrid genetic algorithm-neural network approach for pricing cores and remanufactured cores índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Industrial Engineering

versão On-line ISSN 2224-7890
versão impressa ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.22 no.2 Pretoria  2011

 

A bacteria foraging algorithm for solving integrated multi-period cell formation and subcontracting production planning in a dynamic cellular manufacturing system

 

 

S.H. TangI; H. NouriII; O. MotlaghIII

IDepartment of Mechanical and Manufacturing Engineering, University Putra, Malaysia, Saihong@eng.upm.edu.my
IIDepartment of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. ro_eagle@yahoo.com
IIIDepartment of Mechanical and Manufacturing Engineering, University Putra, Malaysia, omid_motlaq@yahoo.com

 

 


ABSTRACT

The bacteria foraging algorithm (BFA) is a new computation technique inspired by the social foraging behaviour of Escherichia coli (E. coli) bacteria. Since the introduction of the BFA by Kevin M. Passino, there have been many challenges in employing this algorithm to problems other than those for which the algorithm was proposed. This research aims to apply this emerging optimisation algorithm to develop a mixed-integer programming model for designing cellular manufacturing systems (CMSs), and production planning in dynamic environments. In dynamic environments, product mix and part demand vary under multi-period planning horizons. Thus the best-designed cells for one period may not be adequate for subsequent periods, requiring their reconstruction. The advantages of the proposed model are as follows: consideration of batch inter-cell and intra-cell material handling by assuming the sequence of operations, allowing for alternative process plans for part types, and consideration of machine copying, with an emphasis on the effect of trade-offs between production and outsourcing costs. The goal is to minimise the sum of the machines' constant and variable costs, inter-cell and intra-cell material handling costs, reconstruction costs, partial subcontracting costs, and inventory carrying costs. In addition, a newly-developed BFA-based optimisation algorithm has been compared with the branch and bound algorithm. The results suggest that the proposed algorithm performs better than related works.


OPSOMMING

Die 'bacteria foraging algorithm' (BFA) is 'n berekeningstegniek gebaseeer op die sosiale soekgedrag van Escherichia coli (E. coli) bakterieë. Sedert die bekendstelling van BFA was daar talle uitdagings oor toepassings van die algoritme op ander probleme as dié waarvoor dit ontwikkel is. Dié navorsing poog om deur toepassing van die algoritme 'n gemengde heelgetalprogrammeringmodel te ontwikkel vir die ontwerp van sellulêre vervaardiging-stelsels sowel as die produksiebeplanning in dinamiese omgewings. Die doel is om die som van die masjienkoste, inter- en intraselmateriaalhanteringkoste, rekonstruksiekoste, gedeeltelike subkontrakteringkoste sowel as voorraaddrakoste te minimiseer. 'n Nuut ontwikkelde BFA-optimiseringalgoritme is ook met die vertakkings-en-begrensingsalgoritme vergelyk. Die resultate toon dat die voorgestelde algoritme gunstig presteer in vergelyking met soortgelyke algoritmes.


 

 

“Full text available only in PDF format”

 

 

REFERENCES

[1] Acharya, D.P., Panda, G., Mishra, S. & Lakhshmi, Y.V.S. 2007. Bacteria foraging based independent component analysis, In Proceedings of the international conference on computational intelligence and multimedia applications, Vol. 2, pp 527-531        [ Links ]

[2] Ah Kioon, S. et al. 2009. Integrated cellular manufacturing systems design with production planning and dynamic system reconstruction, European Journal of Operational Research, 192, pp 414-428        [ Links ]

[3] Bajestani, M.A. et al. 2009. A multi-objective scatter search for a dynamic cell formation problem, Computers & Operations Research, 36 2009, pp 777-794        [ Links ]

[4] Baykasogylu, A. & Gindy, N.Z. 2001. A simulated annealing algorithm for dynamic layout problem, Computers & Operations Research, 28, pp 1403-1426        [ Links ]

[5] Boulif, M. & Atif, K. 2008. A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies, International Journal of Approximate Reasoning, 47, pp 141-165        [ Links ]

[6] Defersha, F.M. & Chen, M. 2006. A comprehensive mathematical model for the design of cellular manufacturing systems, International Journal of Production Economics, 103, pp 767-783        [ Links ]

[7] Defersha, F.M. & Chen, M. 2008. A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality. European Journal of Operational Research, 187, 46-69.         [ Links ]

[8] Deljoo, V. et al. 2010. Using genetic algorithm to solve dynamic cell formation problem, Applied Mathematical Modelling, 34, pp 1078-1092        [ Links ]

[9] Jeon, G. & Leep, H.R. 2006. Forming part families by using genetic algorithm and designing machine cells under demand changes, Computers & Operations Research, 33, pp 263-283        [ Links ]

[10] Mahdavi, I. et al. 2010. Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment, Computers and Mathematics with Applications, doi:10.1016/j.camwa.2010.03.044        [ Links ]

[11]Majhi, B. & Panda, G. 2007a. Bacterial foraging based identification of nonlinear dynamics system, In Proceedings of IEEE international congress on evolutionary computation (CEC-2007), pp 1636-1641, Singapore.         [ Links ]

[12] Majhi, B. & Panda, G. 2007b. Particle swarm optimization based efficient adaptive channel equalizer for digital communication, In Proceedings of international conference on trends in intelligent electronics systems (2007). Chennai.         [ Links ]

[13] Majhi, B., Panda, G. & Choubey, A. 2006. On the development of a new adaptive channel equalizer using bacterial foraging optimization technique, In Proceedings of IEEE annual India conference (INDICON-2006), pp 1-6, New Delhi, India.         [ Links ]

[14] Majhi, R., Panda, G., Majhi, B. & Sahoo, G. 2009. Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques, International Journal of Expert Systems with Applications 36, pp 10097-10104        [ Links ]

[15] Mishra, S. 2005. Hybrid least square adaptive bacterial foraging strategy for harmonic estimation, IEE Proceedings on Generation Transmission and Distribution, 152(3), pp 379-389        [ Links ]

[16] Mishra, S. & Bhende, C.N. 2007. Bacterial foraging technique based optimized active power filter for load compensation, IEEE Transactions on Power Delivery, 22(1), pp 457-465        [ Links ]

[17] Panda, G., Majhi, B. & Mishra, S. 2006. Nonlinear system identification using bacterial foraging based learning, In Proceedings of third international conference on artificial intelligence in engineering technology (ICAIET-2006), pp 120-125, Kota Kinabalu, Malaysia.         [ Links ]

[18] Passino, K.M. 2002. Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems Magazine, 22(3), pp 52-67        [ Links ]

[19] Rheault, M., Drolet, J. & Abdulnour, G. 1995. Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment, Computers & Industrial Engineering 29 (1-4), pp 221-225        [ Links ]

[20] Safaei, N. et al. 2008. A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system, European Journal of Operational Research 185, pp 563-592        [ Links ]

[21] Safaei, N. et al. 2008. A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions, Fuzzy Sets and Systems 159, pp 215 - 236        [ Links ]

[22] Safaei, N. et al. 2009. Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems, International Journal of Production Economics 120, pp 301-314        [ Links ]

[23] Seifoddin,H. & Djassemi, M. 1996. Improving the performance of cellular manufacturing by a dynamic part assignment approach, Computers in Industrial Engineering, 30(4), pp 719-726        [ Links ]

[24] Tavakkoli-Moghaddam, R. & Aryanezhad, M.B. 2005. Solving a dynamic cell formation problem using metaheuristics, Applied Mathematics and Computation 170, pp 761-780        [ Links ]

[25] Tripathy, M. & Mishra, S. 2007. Bacteria foraging based to optimize both real power loss and voltage stability limit, IEEE Transactions on Power Systems, 22(1), pp 240-248        [ Links ]

[26] Tripathy, M., Mishra, S., Lai, L.L. & Zhang, Q.P. 2006. Transmission loss reduction based on FACTS and bacteria foraging algorithm, PPSN, pp 222-231        [ Links ]

[27] Ulagammai, L., Venkatesh, P., Kannan, S.P. & Padhy, N.P. 2007. Application of bacteria foraging technique trained and artificial and wavelet neural networks in load forecasting, Neurocomputing, pp 2659-2667        [ Links ]

 

 

1 The author is enrolled for a PhD (Mechanical Engineering) degree in the Department of Mechanical and Manufacturing Engineering, University Putra, Malaysia.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons