SciELO - Scientific Electronic Library Online

 
vol.22 número1An integrated methodology for layout design and work organisation in a furniture manufacturing plantUsing Poka-yoke methods to improve employment potential of intellectually disabled workers índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Industrial Engineering

versão On-line ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.22 no.1 Pretoria  2011

 

A multi-objective genetic algorithm approach to the probabilistic manufacturing cell formation problem

 

 

V. JayakumarI; R. RajuII

ISchool of Mechanical and Building Sciences, VIT University, India. jkmails2k2@yahoo.com
IIDepartment of Industrial Engineering, Anna University, Chennai, India. krrajuin@yahoo.co.in

 

 


ABSTRACT

Due to customised products, shorter product life-cycles, and unpredictable patterns of demand, manufacturing industries are faced with stochastic production requirements. It is unlikely that the production requirements (product mix and demand) are known exactly at the time of designing the manufacturing cell. However, a set of possible production requirements (scenarios) with certain probabilities are known at the design stage. Though a large number of research works on manufacturing cells have been reported, very few have considered random product mix constraints at the design stage. This paper presents a nonlinear mixed-integer mathematical model for the cell formation problem with the uncertainty of the product mix for a single period. The model incorporates real-life parameters like alternate routing, operation sequence, duplicate machines, uncertain product mix, uncertain product demand, varying batch size, processing time, machine capacity, and various cost factors. A solution methodology for best possible cell formation using a genetic algorithm (GA) is presented, and the computational procedure is illustrated for the case study undertaken.


OPSOMMING

Vanweë doelgemaakte produkte, korter produklewensiklusse en onvoorspelbare vraagpatrone, staar vervaardigingsindustrieë stochastiese produksiebehoeftes in die gesig. Dit is onwaarskynlik dat produksiebehoeftes (produkmengsel en vraag) presies bekend sal wees wanneer die vervaardigingsel ontwerp word. Desnieteenstaande sal 'n stel moontlike produksiebehoeftes (scenarios) met bepaalde waarskynlikhede tog op hierdie stadium bekend wees. Alhoewel heelwat navorsing reeds op vervaardigingselle gedoen is, is daar weinig gerapporteer waar lukraak produkmengselrandvorwaardes by die ontwerpfase oorweeg is. Hierdie artikel hou 'n nie-lineêre gemengde-heeltal- wiskundige model voor vir die selformasieprobleem met onsekerheid oor die produkmengsel in 'n enkelperiode. Die model inkorporeer werklike parameters soos alternatiewe roetes, bewerkingsvolgordes, duplikaat toerusting, onsekere produkmengsels, onsekere produkvraag, wisselende lotgroottes, prosesseertye, toerustingkapasiteit en verskeie kostefaktore. 'n Oplossings-metodologie aan die hand van 'n genetiese algoritme vir die beste moontlike selformasie word voorgehou en die prosedure word by wyse van 'n gevallestudie geïllustreer.


 

 

“Full text available only in PDF format”

 

 

REFERENCES

[1] Wemmerlov, U. & Johnson, D.J. 1997. Cellular manufacturing at 46 user plants: Implementation experiences and performance improvements, International Journal of Production Research, 35, pp. 29-49.         [ Links ]

[2] Huber, V. & Hyer, N. 1985. The human impact of cellular manufacturing, Journal of Operations Management, 4, pp. 183-195.         [ Links ]

[3] Dale, B.G. 1999. Handbook of cellular manufacturing, John Wiley and Sons, USA.         [ Links ]

[4] Wemmerlov, U. & Hyer, N. 1986. Procedures for the part family/machine group identification problem in cellular manufacturing, Journal of Operations Management, 6, pp. 125-147.         [ Links ]

[5] Kusiak, A. 1987. The generalized group technology concept, International Journal of Production Research, 25, pp. 561-569.         [ Links ]

[6] Singh, N. 1993. Design of cellular manufacturing systems: An invited review, European Journal of Operations Research, 69, pp. 284-291.         [ Links ]

[7] Reisman, A., Kumar, A., Motwai, J. & Cheng, C. 1997. Cellular manufacturing: A statistical review of the literature (1965-1995), Operations Research, 45, pp. 508-535.         [ Links ]

[8] Selim, H., Askin, R.G. & Vakharia, A.J. 1998. Cell formation in group technology: Review, evaluation and directions for future research, Computers and Industrial Engineering, 34, pp. 3-20.         [ Links ]

[9] Sarkar, B. & Mondal, S. 1999. Grouping efficiency measures in cellular manufacturing: A survey and critical review, International Journal of Production Research, 37, pp. 285-314.         [ Links ]

[10] Mansouri, S.A., Moattar-Hussein, S.M. & Newman, S.T. 2000. A review of the modern approaches to multi-criteria cell design, International Journal of Production Research, 38, pp. 1201-1218.         [ Links ]

[11] Seifoddini, H. 1990. A probabilistic model for machine cell formation, Journal of Manufacturing Systems, 9, pp. 69-75.         [ Links ]

[12] Sankaran, S. & Kasilingam, R.G. 1993. On cell size and machine requirements planning in group technology systems, European Journal of Operations Research, 69, pp. 373-383.         [ Links ]

[13] Harahalakis, G., Nagi, R. & Proth, J. 1994. Manufacturing cell formation under random product demand, International Journal of Production Research, 32, pp. 47-64.         [ Links ]

[14] Chen, M. 1998. A mathematical programming model for systems reconfiguration in a dynamic cellular manufacturing environment, Annals of Operations Research, 77, pp. 109-128.         [ Links ]

[15] Wicks, E.M. & Resors, D.J. 1999. Designing cellular manufacturing systems with dynamic part populations, IIE Transactions, 31, pp. 11-20.         [ Links ]

[16] Mungwatanna, A. 2000. Design of cellular manufacturing systems for dynamic and uncertain production requirement with presence of routing flexibility, PhD dissertation, Blacksburg State University, Virginia.         [ Links ]

[17] Schaller, J. 2007. Designing and redesigning cellular manufacturing systems to handle demand changes, Computers and Industrial Engineering, 53, pp. 478-490.         [ Links ]

[18] Chen, M. & Cao, D. 2004. Coordinating production planning in cellular manufacturing environment using tabu search, Computers and Industrial Engineering, 46, pp. 571-582.         [ Links ]

[19] Ioannou, G. 2006. Time-phased creation of hybrid manufacturing systems, International Journal of Production Economics, 102, pp. 183-198.         [ Links ]

[20] Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N. & Azaron, A. 2005. Solving a dynamic cell formation problem using metaheuristics, Applied Mathematics and Computation, 170, pp. 761-780.         [ Links ]

[21] Venugopal, V. & Narendaran, T.T. 1992. A genetic algorithm approach to the machine-component grouping problem with multiple objectives, Computers and Industrial Engineering, 22, pp. 478-490.         [ Links ]

[22] Gupta, Y.P., Gupta, M.C., Kumar, A. & Sundram, C. 1996. A genetic algorithm based approach to cell composition and layout design problems, International Journal of Production Research, 34, pp. 625-641.         [ Links ]

[23] Hu, G.H., Chen, Y.P., Zhou, Z.D. & Fang, H.C. 2006. A genetic algorithm for the inter-cell layout and material handling system design, International Journal of Advanced Manufacturing Technology, 34, pp. 1153-1163.         [ Links ]

[24] Onwubolu, G.C. & Mutingi, M. 2001. A genetic algorithm approach to cellular manufacturing systems, International Journal of Production Research, 32, pp. 185-207.         [ Links ]

[25] Suer, G.A., Vazquez, R. & Cortes, M. 2005. A hybrid approach to genetic algorithms and local optimizers in cell loading, Computers and Industrial Engineering, 48, pp. 625-641.         [ Links ]

[26] Tariq, A., Hussain, I. & Ghafoor, A. 2008. A hybrid genetic algorithm for machine-part grouping, Computers and Industrial Engineering, 56, pp. 347-356.         [ Links ]

[27] Holland, J.H. 1975. Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI.         [ Links ]

[28] Goldberg, D.E. 1989. Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Boston.         [ Links ]

[29] Tavakkoli-Moghaddam, R., Safaei, N. & Sassani, F. 2008. A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing, Journal of Operations Research Society, 59, pp. 443-454.         [ Links ]

[30] Rosenblatt, M. & Kropp, D. 1992. The single period stochastic plant layout problem, IIE Transactions, 24, pp. 169-176.         [ Links ]

 

 

* Corresponding author.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License