SciELO - Scientific Electronic Library Online

 
vol.21 número2Reconfigurable product routing and control for mass customisation manufacturingHow to control process variability more effectively: The case of a B-complex vitamin production process índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Industrial Engineering

versión On-line ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.21 no.2 Pretoria  2010

 

GENERAL ARTICLE

 

Determining tactical operational planning policies for an auto carrier - A case study

 

 

A.J. du PlessisI; J. BekkerII

IDepartment of Industrial Engineering, University of Stellenbosch, South Africa aduplessis@bwlog.com
IIDepartment of Industrial Engineering, University of Stellenbosch, South Africa jb2@sun.ac.za

 

 


ABSTRACT

This study was done to assist a local auto carrier company with tactical operational planning. The objective of the planning process is to maximise the number of vehicles delivered while being on time and adhering to staff and maintenance schedule constraints.
We investigated the feasibility of allowing part of the fleet to roam the closed spatial network, as opposed to the traditional assignment of the complete fleet to fixed routes. We developed decision-making rules for roaming and fixed-to-route auto carriers, and evaluated the quality of these proposed rules, in combination with different fleet compositions, using discrete event simulation and four performance measures.
We found that the auto carrier company should adopt a tactical operations policy where at least 50% of the fleet is allowed to roam, while roaming auto carriers pick vehicles to transport according to specific rules.


OPSOMMING

Hierdie studie is gedoen om 'n plaaslike motorvervoer-onderneming te help met taktiese bedryfsbeplanning. Die doelwit van die beplanningsproses is om die aantal voertuie wat betyds afgelewer word te maksimeer met inagneming van personeel- en instandhouding-beperkings. Ons het die moontlikheid dat 'n deel van die vragmotorvloot swerwend in die geslote ruimtelike roete-network moet opereer, ondersoek. Dit is in teenstelling met die tradisionele vaste toedeling van vragmotors aan roetes. Besluitnemingreëls vir swerwende en vaste-roete vragmotors is ontwikkel, en die gehalte van die reels is met diskrete simulasie en vier prestasiemaatstawwe evalueer.
Ons het bevind dat die vervoeronderneming 'n bedryfsbeleid behoort te aanvaar wat toelaat dat ten minste 50% van die vloot swerf, terwyl hierdie swerwende vragmotors voertuie volgens spesifieke reëls by oplaaipunte moet kies.


 

 

“Full text available only in PDF format”

 

 

REFERENCES

[1] Agbegha, G.Y., Ballou, R.H. & Mathur, K. 1998. Optimizing auto-carrier loading, Transportation Science 32, pp. 174-188.         [ Links ]

[2] Andersen, J., Crainic, T.G. & Christiansen, M. 2009. Service network design with management and coordination of multiple fleets, European Journal of Operational Research 193, pp. 377-389.         [ Links ]

[3] Banks, J. 1998. Handbook of simulation: Principles, methodology, advances, applications, and practice, John Wiley and Sons Inc.         [ Links ]

[4] Branke, J., Middendorf, M., Noeth, G. & Dessouky, M. 2005. Waiting strategies for dynamic vehicle routing, Transportation Science 39, pp. 298-312.         [ Links ]

[5] Carvalho, T.A. & Powell, W.B. 2000. Multiplier adjustment method for dynamic resource allocation problems, Transportation Science 34, pp. 150-164.         [ Links ] [

[6] Crainic, T.G. & Laporte, G. 1996. Planning models for freight transportation, European Journal of Operational Research 97, pp. 409-438.         [ Links ]

[7] Doerner, K.F., Fuellerer, G., Hartl, R.F., Gronalt, M. & Iori, M. (2007). Metaheuristics for the vehicle routing problem with loading constraints, Networks 49(4), pp. 294 - 307.         [ Links ]

[8] Garcia, B.R. 2005. Keeping up with cargo: Simulation provides alternative ports of call, /ndustrial Engineer 41, pp. 669-693.         [ Links ]

[9] Hickman, M.D. 2001. An analytic stochastic model for the transit vehicle holding problem, Transportation Science 35, pp. 215-237.         [ Links ]

[10] Jahanshahloo, G.R., Lotfi, F.H. & Izadikhah, M. 2006. An algorithmic method to extend TOPSIS for decision-making problems with interval data, Applied Mathematics and Computation 175, pp. 1375-1384.         [ Links ]

[11] Krajewska, M.A. & Kopfer H. In press. Transportation planning in freight forwarding companies: Tabu search algorithm for the integrated operational transportation planning problem, European Journal of Operational Research, doi:10.1016/ j.ejor.2008.06.042.         [ Links ]

[12] Laporte, G. 2007. What you should know about the vehicle routing problem, Naval Research Logistics 54, pp. 811-819.         [ Links ]

[13] Laporte, G., Gendreau, M., Potvin, J. & Semet, F. 2000. Classical and modern heuristics for the vehicle routing problem, /nternational Transactions in Operations Research 7, pp. 285-300.         [ Links ]

[14] Law, A.M. & Kelton, W.D. 2000. Simulation modeling and analysis, 3rd edition, McGraw-Hill.         [ Links ]

[15] Ma, J., Fan, Z. & Huang, L. 1999. A subjective and objective integrated approach to determine attribute weights, European Journal of Operational Research 112, pp. 397-404.         [ Links ]

[16] Markowitz, H. 1952. Portfolio theory, The Journal of Finance 7, pp. 77-91.         [ Links ]

[17] Mes, M., van der Heijden, M. & van Harten, A. 2007. Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems, European Journal of Operational Research 181, pp. 59-75.         [ Links ]

[18] MitroviC-MiniC, S. & Laporte, G. 2004. Waiting strategies for the dynamic pickup and delivery problem with time windows. Transportation Research Part B 38, p.635- 655.         [ Links ]

[19] Moreno-Quintero, E. 2006. Optimal control of road freight flows by route choice inducement: A case from Mexico, European Journal of Operational Research 175, pp. 1588-1604.         [ Links ]

[20] Powell, W.B., Snow, W. & Cheung, R.K. 2000. Adaptive labeling algorithms for the dynamic assignment problem, Transportation Science 34, pp. 50-66.         [ Links ]

[21] Rockwell Software. 2009. http://www.arenasimulation.com. Accessed 10 April 2010.         [ Links ]

[22] Song, J. & Savelsbergh, M. 2002. Performance measurement for inventory routing, Transportation Science 41, pp. 44-54.         [ Links ]

[23] Sorensen, K. 2006. Route stability in vehicle routing decisions: A bi-objective approach using metaheuristics, Central European Journal of Operations Research 14, pp. 193-207.         [ Links ]

[24] Tadei, R., Perboli, G. & Della Croce, F. 2002. A heuristic algorithm for the auto- carrier transportation problem, Transportation Science 36, pp. 55-62.         [ Links ]

[25] Thomas, B. 2007. Waiting strategies for anticipating service requests from known customer locations. Transportation Science 41, pp.319-331.         [ Links ]

[26] Toth, P. & Vigo, D. 2000. The vehicle routing problem, Society for Industrial and Applied Mathematics (SIAM).         [ Links ]

[27] Wu, P., Hartman, J.C. & Wilson, G.R. 2005. An integrated model and solution approach for fleet sizing with heterogenous assets, Transportation Science, 39, pp. 87-103.         [ Links ]

[28] Yang, J., Jaillet, P. & Mahmassani, H. 2004. Real-time multivehicle truckload pickup and delivery problems, Transportation Science 38, pp. 135-148.         [ Links ]

 

 

* Corresponding author
1 The author was enrolled for an M Sc Eng (Industrial) degree in the Department of Industrial Engineering, University of Stellenbosch. *Corresponding author

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License