SciELO - Scientific Electronic Library Online

 
vol.21 issue2New heuristics for minimising total completion time and the number of tardy jobs criteria on a single machine with release timeA hybrid genetic algorithm-neural network approach for pricing cores and remanufactured cores author indexsubject indexarticles search
Home Pagealphabetic serial listing  

South African Journal of Industrial Engineering

On-line version ISSN 2224-7890
Print version ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.21 n.2 Pretoria  2010

 

GENERAL ARTICLE

 

Demand categorisation, forecasting, and inventory control for intermittent demand items

 

 

E. BabiloniI; M. CardósII; J.M. AlbarracínIII; M.E. PalmerIV

IDepartment of Management, Polytechnic University of Valencia, Spain mabagri@doe.upv.es
IIDepartment of Management, Polytechnic University of Valencia, Spain mcardos@doe.upv.es
IIIDepartment of Management, Polytechnic University of Valencia, Spain malbarr@doe.upv.es
IVDepartment of Management, Polytechnic University of Valencia, Spain marpalga@doe.upv.es

 

 


ABSTRACT

It is commonly assumed that intermittent demand appears randomly, with many periods without demand; but that when it does appear, it tends to be higher than unit size. Basic and well-known forecasting techniques and stock policies perform very poorly with intermittent demand, making new approaches necessary. To select the appropriate inventory management policy, it is important to understand the demand pattern for the items, especially when demand is intermittent. The use of a forecasting method designed for an intermittent demand pattern, such as Croston's method, is required instead of a simpler and more common approach such as exponential smoothing. The starting point is to establish taxonomic rules to select efficiently the most appropriate forecasting and stock control policy to cope with thousands of items found in real environments. This paper contributes to the state of the art in: (i) categorisation of the demand pattern; (ii) methods to forecast intermittent demand; and (iii) stock control methods for items with intermittent demand patterns. The paper first presents a structured literature review to introduce managers to the theoretical research about how to deal with intermittent demand items in both forecasting and stock control methods, and then it points out some research gaps for future development for the three topics.


OPSOMMING

Daar word algemeen aanvaar dat intermitterende vraag op toevalswyse voorkom, met verskeie periodes waar daar geen vraag is nie. Wanneer die vraag dan wel materialiseer, oorskry dit dikwels die eenheidsgrootte. Die bekende vooruitskattingstegnieke en voorraadbeleidstellings het min sukses waar intermitterende vraag voorkom, sodat nuwe benaderings nodig is om die problem aan te spreek. Om 'n geskikte voorraadbestuur-beleid te selekteer, is dit noodsaaklik om die vraagpatroon van die items te verstaan, juis in gevalle van intermitterende patrone. Die gebruik van 'n vooruitskattingstegniek soos dié van Croston, eerder as die makliker en meer algemene benadering van eksponensiële effening, word aanbeveel. Die vertrekpunt is om taksonomiese reels vas te stel om die mees gepaste vooruitskattingstegniek en voorraadbeheerbeleid te selekteer sodat die duisende items wat in werklike omgewings aangetref word, hanteer kan word. Hierdie artikel dra by in soverre as dat 1) vraagpatrone gekategoriseer word; ii) metodes vir vooruitskatting van intermitterende vraagpatrone voorgehou word; en iii) voorraadbeheermetodes voorgestel word vir items met wisselende vraag.


 

 

“Full text available only in PDF format”

 

 

REFERENCES

[1] Johnston, F.R. & Boylan, J.E. 1996. Forecasting intermittent demand: A comparative evaluation of Croston's method. Comment, International Journal of Forecasting, 12 (2), pp 297-298.         [ Links ]

[2] Syntetos, A.A. & Boylan, J.E. 2001. On the bias of intermittent demand estimates. International Journal of Production Economics, 71 (1-3), pp 457-466.         [ Links ]

[3] Willemain, T.R., Smart, C.N., Shockor, J.H. &Desautels, P.A. 1994. Forecasting intermittent demand in manufacturing - A comparative-evaluation of Croston's method. International Journal of Forecasting, 10 (4), pp 529-538.         [ Links ]

[4] Sani, B. &Kingsman, B.G. 1997. Selecting the best periodic inventory control and demand forecasting methods for low demand items. Journal of the Operational Research Society, 48 (7), pp 700-713.         [ Links ]

[5] Boylan, J.E., Syntetos, A.A. & Karakostas, G.C. 2006. Classification for forecasting and stock control: A case study. Journal of the Operational Research Society, Special Issue paper, pp 1-9.         [ Links ]

[6] Williams, T.M. 1984. Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, 35 (10), pp 939-948.         [ Links ]

[7] Eaves, A.H.C. & Kingsman, B.G. 2004. Forecasting for the ordering and stock-holding of spare parts, Journal of the Operational Research Society, 55 (4), pp 431-437.         [ Links ]

[8] Syntetos, A.A., Boylan, J.E. & Croston, J.D. 2005. On the categorization of demand patterns. Journal of the Operational Research Society, 56 (5), pp 495-503.         [ Links ]

[9] Syntetos, A.A. & Boylan, J.E. 2005. The accuracy of intermittent demand estimates. International Journal of Forecasting, 21 (2), pp 303-314.         [ Links ]

[10] Kostenko, A.V. & Hyndman, R.J. 2006. A note on the categorization of demand patterns. Journal of the Operational Research Society, 57 (10), pp 1256-1257.         [ Links ]

[11] Gelders, L.F. & van Looy, P.M. 1978. An inventory policy for slow and fast movers in a petrochemical plant: A case study. Journal of the Operational Research Society, 29 (9), pp 867-874.         [ Links ]

[12] Bartezzaghi, E., Verganti, R. & Zotteri, G. 1999. Measuring the impact of asymmetric demand distributions on inventories. International Journal of Production Economics, 60 (1), pp 395-404.         [ Links ]

[13] Zotteri, G. 2000. The impact of distributions of uncertain lumpy demand on inventories. Production Planning & Control, 11 (1), pp 32-43.         [ Links ]

[14] Silver, E.A., Pyke, D.F. & Peterson, R. 1998. Inventory management and production planning and scheduling. 3rd edition, John Wiley & Sons.         [ Links ]

[15] Rice, J.A. 1995. Mathematical statistics and data analysis. Duxbury Press.         [ Links ]

[16] Syntetos, A.A.& Boylan, J.E. 2006. On the stock control performance of intermittent demand estimators. International Journal of Production Economics, 103 (1), pp 36-47.         [ Links ]

[17] Friend, J.K. 1960. Stock control with random opportunities for replenishment. Operational Research Quarterly, 11 (3), pp 130-136.         [ Links ]

[18] Adelson, R.M. 1966. Compound Poisson distributions. Operational Research Quarterly, 17 (1), pp 73-75.         [ Links ]

[19] Nahmias, S. & Demmy, W.S. 1982. The Logarithmic Poisson Gamma-Distribution - A model for leadtime demand. Naval Research Logistics, 29 (4), pp 667-677.         [ Links ]

[20] Janssen, F., Heuts, R. & de Kok, T. 1998. On the (R, s, Q) inventory model when demand is modelled as a compound Bernoulli process. European Journal of Operational Research, 104 (3), pp 423-436.         [ Links ]

[21] Strijbosch, L.W.G., Heuts, R.M.J. & van der Schoot, E.H.M. 2000. A combined forecast - inventory control procedure for spare parts. Journal of the Operational Research Society, 51 (10), pp 1184-1192.         [ Links ]

[22] Croston, J.D. 1972. Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23 (3), pp 289-303.         [ Links ]

[23] Rao, A.V. 1973. Forecasting and stock control for intermittent demands. Operational Research Quarterly, 24 (4), pp 639-640.         [ Links ]

[24] Schultz, C.R. 1987. Forecasting and inventory control for sporadic demand under periodic review. Journal of the Operational Research Society, 38 (5), pp 453-458.         [ Links ]

[25] Johnston, F.R. & Boylan, J.E. 1996. Forecasting for items with intermittent demand. Journal of the Operational Research Society, 47 (1), pp 113-121.         [ Links ]

[26] Snyder, R. 2002. Forecasting sales of slow and fast moving inventories. European Journal of Operational Research, 140 (3), pp 684-699.         [ Links ]

[27] Leven, E. & Segerstedt, A. 2004. Inventory control with a modified Croston procedure and Erlang distribution. International Journal of Production Economics, 90 (3), pp 361-367.         [ Links ]

[28] Shale, E.A., Boylan, J.E. & Johnston, F.R. 2006. Forecasting for intermittent demand: The estimation of an unbiased average. Journal of the Operational Research Society, 57 (5), pp 588-592.         [ Links ]

[29] Boylan, J.E. & Syntetos, A.A. 2007. The accuracy of a modified Croston procedure. International Journal of Production Economics, 107 (2), pp 511-517.         [ Links ]

[30] Teunter, R. & Sani, B. 2009. On the bias of Croston's forecasting method. European Journal of Operational Research, 194 (1), pp 177-183.         [ Links ]

[31] Willemain, T.R., Smart, C.N. & Schwarz, H.F. 2004. A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20 (3), pp 375-387.         [ Links ]

[32] Efron, B. 1979. Bootstrap methods - Another look at the jackknife. Annals of Statistics, 7 (1), pp 1-26.         [ Links ]

[33] Hua, Z.S., Zhang, B., Yang, J. & Tan, D.S. 2007. A new approach of forecasting intermittent demand for spare parts inventories in the process industries. Journal of the Operational Research Society, 58 (1), pp 52-61.         [ Links ]

[34] Bao, Y.K., Zou, H.& Liu, Z.T. 2006. Forecasting intermittent demand by fuzzy support vector machines. Advances in Applied Artificial Intelligence, Proceedings, 4031 (1080-1089.         [ Links ]

[35] Yeh, Q.J., Chang, T.P.& Chang, H.C. 1997. An inventory control model with gamma distribution. Microelectronics and Reliability, 37 (8), pp 1197-1201.         [ Links ]

[36] Schultz, C.R. 1989. Replenishment delays for expensive slow-moving items. Management Science, 35 (12), pp 1454-1462.         [ Links ]

[37] Dunsmuir, W.T.M. & Snyder, R.D. 1989. Control of inventories with intermittent demand. European Journal of Operational Research, 40 (1), pp 16-21.         [ Links ]

[38] Snyder, R.D. 1984. Inventory control with the Gamma Probability-Distribution. European Journal of Operational Research, 17 (3), pp 373-381.         [ Links ]

[39] Cardós, M., Miralles, C. & Ros, L. 2006. An exact calculation of the cycle service level in a generalized periodic review system. Journal of the Operational Research Society, 57 (10), pp 1252-1255.         [ Links ]

[40] Cardós, M. & Babiloni, M.E. 2008. Exact and approximated calculation of the cycle service level in periodic review policies. Fifteenth International Working Seminar on Production Economics, 4, pp. 39-50.         [ Links ]

[41] Burgin, T.A. 1975. Gamma distribution and inventory control. Operational Research Quarterly, 26 (3), pp 507-525.         [ Links ]

[42] Brown, R.G. 1959. Statistical forecasting for inventory control. McGraw Hill.         [ Links ]

[43] Segerstedt, A. 1994. Inventory control with variation in lead times, especially when demand is intermittent. International Journal of Production Economics, 35 (1-3), pp 365-372.         [ Links ]

[44] Haddock, J., Iyer, N.T. & Nagar, A. 1994. A heuristic for inventory management of slow-moving items. Production Planning & Control, 5 (2), pp 165-174.         [ Links ]

[45] Vereecke, A. & Verstraeten, P. 1994. An inventory management model for an inventory consisting of lumpy items, slow movers and fast movers. International Journal of Production Economics, 35 (1-3), pp 379-389.         [ Links ]

[46] Larson, C.E., Olson, L.J. & Sharma, S. 2001. Optimal inventory policies when the demand distribution is not known. Journal of Economic Theory, 101 (1), pp 281-300.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License