SciELO - Scientific Electronic Library Online

vol.21 número1Planning empty container relocations under uncertaintyTwo-commodity perishable inventory system with bulk demand for one commodity índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


South African Journal of Industrial Engineering

versión On-line ISSN 2224-7890
versión impresa ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.21 no.1 Pretoria  2010




Forecasting new product sales



R. SiriramI; D.R. SnaddonII

IDepartment of Mechanical, Industrial and Aeronautical Engineering, University of Witwatersrand, South Africa,
IIDepartment of Mechanical, Industrial and Aeronautical Engineering, University of Witwatersrand, South Africa,




This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.


Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.



“Full text available only in PDF format”





[1] Abernathy, W.J. & Utterback, J.M. 1988. Patterns of industrial innovation, In: Tushman, M.L. and Moore, W.L., Readings in the management of innovation, 2nd edition, Harper Business, 25-36.         [ Links ]

[2] Bower, J.L. & Christensen, C.M. 1995. Disruptive technologies: Catching the wave, Harvard Business Review, January-February, 43-53.         [ Links ]

[3] Cormican, K. & O'Sullivan, D. 2004. Auditing best practice for effective product innovation management, Technovation, 24, 819-829.         [ Links ]

[4] Day, G.S. & Schoemaker, P.J.H. 2000, Managing emerging technologies, John Wiley and Sons, Inc.         [ Links ]

[5] Foster, R.N. 1988. Timing technological transitions, In: Tushman, M.L., Moore, W.L., Readings in the management of innovation, 2nd edition, Harper Business, 215228.         [ Links ]

[6] Gomes, J.F.S., De Weerd-Nederhof, P.C., Pearson, A.W. & Cunha, M.P. 2003. Is more always better? An exploration of the differential effects of functional integration on performance in new product development, Technovation, 23, 185-191.         [ Links ]

[7] Leifer, R., Mcdermott, C.M., O'Connor, G.C., Peters, L.S., Rice, M. & Veryzer, R.W. 2000, Radical innovation: How mature companies can outsmart upstarts, Harvard Business School Press.         [ Links ]

[8] Hair, J.F. Jr., Anderson, R.E., Tatham, R.L. & Black, W.C. 1998. Multivariate data analysis, Prentice Hall, 5th edition.         [ Links ]

[9] Mahajan, V., Muller, E. & Bass, F.M. 1990. New product diffusion models in marketing: A review and directions for research, Journal of Marketing, Vol. 54, 1-26.         [ Links ]

[10] Martino, J.P. 1993. Technological forecasting for decision making, McGraw-Hill, 3rd edition.         [ Links ]

[11] Oliver, R.M. & Yang, H.J. 1988. Saturation models: A brief survey and critique, Journal of Forecasting, 7, 215-223.         [ Links ]

[12] Siriram, R. & Snaddon, D.R. 2004. Linking technology management, transaction processes and governance structures, Technovation, 24, 779-791.         [ Links ]

[13] Siriram, R. & Snaddon, D.R. 2005. Verifying links in technology management, transaction processes and governance structures, Technovation, 25, 321-337.         [ Links ]

[14] Stock, G.N., Greis, N.P. & Fischer, W.A. 2002. Firm size and dynamic technological innovation, Technovation, 22, 537-549.         [ Links ]

[15] Tidd, J., Bessant, J. & Pavitt, K. 2001. Managing innovation: Integrating technological, market and organizational change, John Wiley and Sons Ltd., 2nd edition.         [ Links ]

[16] Tushman, L. & Anderson, P. 1986. Technological discontinuities and organizational environments, Administrative Science Quarterly, 31, 439-465.         [ Links ]

[17] Tushman, M.L. & Rosenkopf, L., 1992. Organizational determinants of technological change: Toward a sociology of technological evolution, Research In Organizational Behaviour, Vol. 14, 311-345.         [ Links ]

[18] Twiss, B.C. 1980. Technological forecasting for decision making, In: Burgleman, R.A., Maidique, M.A. & Wheelwright, S.C., Strategic management of technology and innovation, 2nd edition, McGraw Hill, 1996.         [ Links ]

[19] Takayama, M., Watanabe, C. & Griffy Brown, C. 2002. Remaining innovative without sacrificing stability: An analysis of strategies in the Japanese pharmaceutical industry that enable firms to overcome inertia resulting from successful market penetration of new product development, Technovation, 22, 747-759.         [ Links ]

[20] Young, P. 1993. Technological growth curves, a competition of forecasting models, Technological Forecasting sand Social Change, 44, 375-389.         [ Links ]

[21] Young, P. & Ord, J.K. 1989. Model selection and estimation for technological growth curves, International Journal of Forecasting, 5, 501-513.         [ Links ]

[22] Winklhofer, H.M. & Diamantopoulos, A. 2002. Managerial evaluation of sales forecasting effectiveness: A MIMIC modelling approach, International Journal of Research in Marketing, 19, 151-166.         [ Links ]



* Corresponding author
1 The author was enrolled for an MEng degree at the Graduate School of Technology Management, University of Pretoria.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons