SciELO - Scientific Electronic Library Online

vol.20 número2Using palletised work-holding to emulate 5-axis machining of aerospace components in the developing worldA new model for single facility location based on service level índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


South African Journal of Industrial Engineering

versión On-line ISSN 2224-7890
versión impresa ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.20 no.2 Pretoria  2009


Simulation-based online scheduling in a make-to-order job shop



D. KrigeI; J. BekkerII; C. SchutteIII

IDepartment of Industrial Engineering, University of Stellenbosch, South Africa
IIDepartment of Industrial Engineering, University of Stellenbosch, South Africa
IIIDepartment of Industrial Engineering, University of Stellenbosch, South Africa




Scheduling is a core activity in the manufacturing business. It assists with the efficient and effective utilisation of capital-intensive resources and increased throughput, thus increasing profitability. Simulation is appealing in manufacturing, as it can realistically imitate dynamic, stochastic processes while being descriptive in predicting the future process. We combined simulation and scheduling and developed an online simulation-based scheduler for manufacturing orders in a South African make-to-order job shop enterprise. There are frequent changes in this type of environment, including random arrivals of orders with stochastic processing times. A simulation-based scheduler is applicable in this myopic, stochastic environment, and we demonstrate its use under these conditions.


Skedulering is 'n kern-aktiwiteit in 'n vervaardigingsonderneming. Dit ondersteun doeltreffende en effektiewe benutting van kapitaal-intensiewe hulpbronne asook verhoogde produksiedeurset, wat weer wins verhoog. Simulasie is van nut in vervaardiging omdat dit dinamiese, stogastiese prosesse realisties kan naboots terwyl dit die prosestoekoms op beskrywende wyse toon. Simulasie en skedulering is gekombineer in hierdie projek om 'n simulasiegebaseerde skeduleerder te ontwikkel vir bestellings in 'n maak-op-aanvraag werkwinkel. Veranderings vind gereeld in hierdie tipe omgewing plaas, en sluit toevallige aankomste van bestellings met stogastiese prosestye in. 'n Simulasiegebaseerde skeduleerder is toepaslik in hierdie stogastiese, korttermyn-omgewing, en die werking van die skeduleerder word in hierdie omstandighede gedemonstreer.



“Full text available only in PDF format” 




[1] Shnits, B., Rubinovitz, J. & Sinreich, D. 2004. Multi-criteria dynamic scheduling methodology for controlling a flexible manufacturing system. International Journal of Production Research, 42, pp. 3457-3472.         [ Links ]

[2] Montazeri, M. & Van Wassenhove, L.N. 1990. Analysis of scheduling rules for an FMS. International Journal of Production Research, 28, pp. 785-802.         [ Links ]

[3] Leung, J.Y-T. 2004. Handbook of scheduling: Algorithms, models, and performance analysis. Chapman & Hall/CRC, New York.         [ Links ]

[4] Baker, K.R. 1974. Introduction to sequencing and scheduling. Wiley & Sons, New Jersey.         [ Links ]

[5] Pezzella, F., Morganti, G. & Ciaschetti, G. 2008. A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35, pp. 3203-3212.         [ Links ]

[6] Pinedo, M. 1995. Scheduling theory, algorithms, and systems. Prentice Hall, New Jersey.         [ Links ]

[7] Church, L.K. & Uzsoy, R. 1992. Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer-Integrated Manufacturing, 5, pp. 153-163.         [ Links ]

[8] Artigues, C., Michelon, P. & Reusser, S. 2003. Insertion techniques for static and dynamic resource-constrained project scheduling. European Journal of Operational Research, 149(2), pp. 249-267.         [ Links ]

[9] Hopp, W.J. & Spearman, M.L. 2001. Factory physics: Foundations of manufacturing management, 2nd edition. Irwin McGraw-Hill, Boston.         [ Links ]

[10] Sadeh, N. 1991. Look-ahead techniques for micro-opportunistic job-shop scheduling [Doctoral Thesis]. Carnegie Mello University, Pennsylvania.         [ Links ]

[11] Perregaard, M. & Clausen, J. 1998. Parallel branch-and-bound methods for the job-shop scheduling problem. Annals of Operations Research, 83, pp. 137-160.         [ Links ]

[12] Fisher, H. & Thompson, G.L. 1963. Probabilistic learning combinations of local job-shop scheduling rules. Industrial Scheduling, Prentice-Hall, Englewood Cliffs, pp. 225-241.         [ Links ]

[13] Schutten, J.M.J. 1998. Practical job-shop scheduling. Annals of Operations Research, 83, pp. 161-177.         [ Links ]

[14] Schriber, T.J. & Brunner, D.T. 2005. Inside discrete-event simulation software: How it works and why it matters, in Proceedings of the 2005 Winter Simulation Conference, M.E. Kuhl, N.M. Steiger, F.B. Armstrong & J.A. Joines (eds),, cited December 2008.         [ Links ]

[15] Kim, M.H. 1994. Simulation-based real-time scheduling in a flexible manufacturing system. Journal of Manufacturing Systems, 13(2), pp. 85-93.         [ Links ]

[16] Rockwell Software. 2008.         [ Links ]



1 The author was enrolled for an MSc Eng (Industrial) degree in the Department of Industrial Engineering, University of Stellenbosch.
2 Corresponding author

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons