SciELO - Scientific Electronic Library Online

vol.20 número2Finding the optimum level of taxes in South Africa: A balanced budget approachExplaining mixed results on Science Parks performance: Bright and dark sides of the effects of inter-organisational knowledge transfer relationships índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


South African Journal of Industrial Engineering

versión On-line ISSN 2224-7890
versión impresa ISSN 1012-277X

S. Afr. J. Ind. Eng. vol.20 no.2 Pretoria  2009


Determining the most important factors for sustainable energy technology selection in Africa



M.L. BarryI; H. SteynII; A.C. BrentIII, IV

IGraduate School of Technology Management, University of Pretoria, South Africa
IIGraduate School of Technology Management, University of Pretoria, South Africa
IIIGraduate School of Technology Management, University of Pretoria, South Africa
IVCentre for Renewable and Sustainable Energy Studies, School of Public Management and Planning, Stellenbosch University, South Africa




The supply of sustainable energy is crucial for sustainable development in Africa. The aim of the study summarised in this paper is the identification, and prioritisation, of the factors that must be taken into account when selecting the most sustainable technological systems in the African context, by applying the Delphi technique. The questionnaire of the first round was based on factors already identified during a focus group exercise with energy experts. The Delphi participants were required to comment on the factors, add new factors, and rate all the factors. The results were fed back during the second round where respondents were again asked to rate the factors for feasibility, desirability, and importance. The outcome is the identification of the most important factors that can be used by decision makers to ensure better selection of sustainable energy technologies and projects. The top five prioritised factors are: Ease of maintenance and support over the life cycle of the technology; Suitable site readily available for pilot studies; Project management; Economic development; and Access to secured suitable sites for deployment.


Die verskaffing van volhoubare energie is van kritiese belang vir die volhoubare ontwikkeling van Afrika. Hierdie studie het gefokus op die identifisering en prioritisering van faktore wat in ag geneem moet word wanneer tegnologiese stelsels vir gebruik in Afrika geselekteer word. Die studie maak gebruik van die Delphi-tegniek. Die vraelys van die eerste rondte is gebaseer op die faktore wat gedurende 'n fokusgroep met energiespesialiste geïdentifiseer is. Deelnemers is gevra om kommentaar te lewer op hierdie faktore, om nuwe faktore by te voeg, en om al die faktore te beoordeel. Die resultate is teruggevoer gedurende die tweede rondte van die Delphi waar deelnemers weer eens gevra is om die faktore te beoordeel in terme van uitvoerbaarheid, wenslikheid, en belangrikheid. Die uitkoms is die identifisering van die belangrikste faktore wat deur besluitnemers gebruik kan word om beter seleksie van 'n keuse van volhoubare energietegnologieë en -projekte te verseker. Die vyf belangrikste faktore is: Gemak van instandhouding en ondersteuning oor die lewensiklus van die tegnologie; geskikte liggings beskikbaar vir proefaanlegte; projekbestuur; ekonomiese ontwikkeling; en toegang tot geskikte liggings vir installasie.



“Full text available only in PDF format” 





[1] Perdan, S. 2004. Introduction to sustainable development. John Wiley and Sons.         [ Links ]

[2] UNECA 2007. Making Africa's power sector sustainable: An analysis of power sector reforms in Africa. Addis Ababa, Ethiopia: UNESCO. Available from: [Accessed: 19 March 2008]        [ Links ]

[3] IEA 2004. World energy outlook 2004. International Energy Agency. Available from:         [ Links ] [Accessed 19 March 2008]

[4] UNEA 2007. Energy for sustainable development: Policy options for Africa [online].         [ Links ] UN-Energy/Africa. Available from: [Accessed 12 March 2008]

[5] UNIDO 2007. Module 1: Overview of renewable energy and energy efficiency [online].         [ Links ] Training package on "Sustainable Energy Regulation and Policymaking for Africa". Available from: [Accessed 17 March 2008]

[6] Anon. 2006. The Delphi method: Definition and historical background. Available from:         [ Links ] [Accessed 25 April 2007]

[7] Crichter, C. & Gladstone, B. 1998. Utilising the Delphi technique in policy discussion: A case study of a privatised utility in Britain. Public Administration, 76 (Autumn), 431-449.         [ Links ]

[8] Mullen, P.M. 2003. Delphi: Myths and reality. Journal of Health Organisation and Management, 17 (1), 37-52.         [ Links ]

[9] Turoff, M. 1970. The design of a policy Delphi. Technological Forecasting and Social Change, 2 (1970), 149-171.         [ Links ]

[10] Hasson, F., Keeney, S. & McKenna, H. 2000. Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32(4), 1008-1015.         [ Links ]

[11] Boynton, L.A. 2006. What we value: A Delphi study to identify key values that guide ethical decision-making in public relations. Public Relations Review, 32 (2006, 325-330.         [ Links ]

[12] The simple way to create surveys [online].         [ Links ] Available from: [Accessed 30 January 2007]

[13] Griffith, L.E., Hogg-Johnson, S., Cole, D.C., Krause, N., Hayden, J. Burdorf, A., Leclerc, A.,Coggon, D. Bongers, P., Walter, S.D. and Shannon, H.S. 2006. Low-back pain definitions in occupational studies were categorised for a meta-analysis using Delphi consensus methods. Journal of Clinical Epidemiology, 2006, 1-9, Article in press.         [ Links ]

[14] Okoli, C. & Pawlowski, S.D. 2004. The Delphi method as a research tool: An example, design considerations and applications. Information and Management, 42 (2004), 15-29.         [ Links ]

[15] Miro, J., Nieto, R. and Huguet, A. 2007. Predictive factors of chronic pain and disability in whiplash. European Journal of Pain, doi:10.1016/j.ejpain.2007.02.004.         [ Links ]

[16] Sackman, H. 1974. Delphi assessment: Expert opinion, forecasting and group process. Rand Report, R1283-PR, Santa Monica, CA.         [ Links ]

[17] Cantrill, J.A., Sibbald, B. & Buetow, S. 1998. Indicators of the appropriateness of long term prescribing in general practice in the United Kingdom: Consensus development, face and content validity, feasibility and reliability. Quality in Health Care, 7 (1998), 130-135.         [ Links ]

[18] Alberts, D.J. 2007. Stakeholders or subject matter experts, who should be consulted? Energy Policy, 35 (2007) 2336-2346.         [ Links ]

[19] Wild, C. & Torgersen, H. 2000. Foresight in medicine: Lessons from three European Delphi studies. European Journal of Public Health, 10 (2), 114-119.         [ Links ]

[20] Delbecq, A.L., Van de Ven, A.H. & Gustafson, D.H. 1975. Group techniques for program planning: A guide to nominal group and Delphi processes. Scott, Foresman and Company.         [ Links ]

[21] Bijl, R. 1992. Delphi in a future scenario study on mental health and mental health care. Futures, 24(3), 232-250.         [ Links ]

[22] ESOMAR 2005. ESOMAR guideline on conducting market and opinion research using the internet. Available from:         [ Links ] [Accessed 6 May 2007]

[23] Jillson, I.A. 1975. The national drug-abuse policy Delphi: Progress report and findings to date. In: Kumaraswamy, M.M. and Anvuur, A.M., 2007.         [ Links ]

[24] Ishikawa, A. 1993. The new fuzzy Delphi method: Economisation of group decision support., Proceedings of the twenty sixth Hawai International Conference on System Sciences.         [ Links ]

[25] Landeta, J. 2006. Current validity of the Delphi method in social sciences. Technological Forecasting and Social Change, 73 (2006) 467-482.         [ Links ]

[26] Dillman, D.A. 2007. Mail and internet surveys: The tailored design method. John Wiley & Sons, Inc, Hoboken, New Jersey, USA.         [ Links ]

[27] Gibson, L.J. & Miller, M.M. 1990. Delphi model for planning "preemptive" regional economic diversification. Economic Development Review, 8 (2), 34-41.         [ Links ]

[28] Schmidt, R.C. 1997. Managing Delphi surveys using non-parametric statistical techniques. Decision Sciences, 28 (3), 763-774).         [ Links ]

[29] Kumaraswamy, M.M. and Anvuur, A.M. 2007. Selecting sustainable teams for PPP projects. Building and Environment, doi:10.1016/j.buildenv.2007.02.001.         [ Links ]



*This paper was presented at the IAMOT 2008 Conference in Dubai, UAE.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons