SciELO - Scientific Electronic Library Online

 
vol.65Synthesis, characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of some Schiff bases derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4 triazineCoordination of the bidentate ligands 2,2'-dipyridylamine, 1-phenyl-1,3-butadione and N'-(propan-2-ylidene)benzohydrazide to rhenium(III) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Chemistry

versão On-line ISSN 1996-840X
versão impressa ISSN 0379-4350

S.Afr.j.chem. (Online) vol.65  Durban  2012

 

RESEARCH ARTICLE

 

Electrochemical oxidation of phenol using a flow-through micro-porous lead dioxide/lead cell

 

 

Ernst E. Ferg*; Shawn Gouws; Basanda Pongoma

Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031, South Africa

 

 


ABSTRACT

The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxide and lead. The electrodes were made by using the principles of curing and formation of lead oxide material that are common in the construction of the electrodes used in lead-acid batteries. This resulted in highly porous electrodes that can allow the reactant solution to flow through them in series, without the risk of having the products being oxidized again at the anode that usually occurs in a simple undivided cell. In this study, a 50 mM solution of phenol in a 60 % acetonitrile and water mixture was used that contained 2 % sulphuric acid. The reactant solution would flow through the anode porous material oxidizing the phenol to benzoquinone. The benzoquinone in solution would then flow through the cathode porous material and reduce to catechol and hydroquinone. The study showed that almost all of the phenol could be converted in one continuous flow process in using a relatively low cost electrochemical micro-flow cell that can be easily scaled up to accommodate larger volumes and concentrations by using electrode manufacturing principles used in the lead-acid battery industry.

Keywords: Phenol, hydroquinone, catechol, lead dioxide, micro-flow cell


 

 

Full text available only in PDF format.

 

Acknowledgements

The authors thank Willard Batteries for supplying the lead oxide, Pb current collectors and the negative cured flat plate electrodes. The authors thank the South African National Research Foundation (NRF) for financial funding towards the project.

 

References

1 Y.M. Henuset and J. Fournier, US patent 6 814 840 B2, 2004.         [ Links ]

2 S.A. Noding US Patent 4 464 236, 1984.         [ Links ]

3 J.L. Boudenne, O. Cerclier, J. Galea and E. van der Vlist, Appl. Cat. A: Gen, 1996, 143, 185-202.         [ Links ]

4 S. Abaci, U. Tamer, K. Pekmez and A. Yildiz, Electrochim. Acta, 2005, 50, 3655-3659.         [ Links ]

5 K.M. Draths and J.W. Frost, J. Am Chem. Soc., 1995, 117, 2395-2400.         [ Links ]

6 H. Liu, Y. Liu, C. Zhang and R. Shen, J. Appl. Elecrochem. 2008, 38, 101-108.         [ Links ]

7 K. Yube, M. Furuta, N. Aoki and K. Mae, Appl. Cat. A: Gen., 2007, 327, 278-286.         [ Links ]

8 X. Li, Y. Cui, Y. Feng, Z. Xie and J.D. Gu, Water Research, 2005, 39, 1972-1981.         [ Links ]

9 B. Jin, J. Huang, A. Zhao, S. Zhang, Y. Tian and J. Yang, J. Electroanal. Chem, 2010, 650, 116-126.         [ Links ]

10 Y.B. Shim and S.M. Park, J. Electroanal. Chem., 1997, 425, 201-207.         [ Links ]

11 M. Gattrell and D. Kirk, J. Electrochem Soc, 1993, 140(4), 903-911.         [ Links ]

12 R. Alnaizy and A. Akgerman, Adv. Environ. Res, 2000, 4, 233-244.         [ Links ]

13 B. Fleszar and J. Poszynska, Electrochim. Acta, 1985, 30(1), 31-42.         [ Links ]

14 Union Carbide Corporation, Great Britain Patent GB1206797, 1970.         [ Links ]

15 H. Bode, Lead-Acid Batteries, John Wiley & Sons, New York, USA, 1977.         [ Links ]

16 G.W. Vinal, Storage Batteries, 4th edn., John Wiley & Sons, New York, USA, 1955.         [ Links ]

17 ChemFiles, Enabling Technologies Microreactor Technology, 2005, 5(7), Aldrich, USA, http://www.sigma-aldrich.com/chemicalsynthesis, accessed 10 October 2011.         [ Links ]

18 E.E. Ferg, P. Loyson and N. Rust, J. Power Sources, 2005, 141, 316-325.         [ Links ]

 

 

Received 28 October 2011
Revised 14 May 2012
Accepted 29 June 2012

 

 

Submitted by invitation to celebrate 2011 the 'International Year of Chemistry'.
* To whom correspondence should be addressed. E-mail: ernst.ferg@nmmu.ac.za

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons