SciELO - Scientific Electronic Library Online

 
vol.65Grade 12 achievement rating scales in the new National Senior Certificate as indication of preparedness for tertiary chemistryThe synthesis of substituted piperazine-cholesterol conjugates for use as components of nucleic acid transfection lipoplexes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

S.Afr.j.chem. (Online) vol.65  Durban  2012

 

RESEARCH ARTICLE

 

Highly active, carbon-supported, PdSn nano-core, partially covered with Pt, as catalysts for methanol oxidation

 

 

Hui WangI; Vladimir LinkovII; Shan JiII, *; Wei ZhangI; Ziqiang LeiI; Rongfang WangI, II, *

IKey Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
IISouth African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa

 

 


ABSTRACT

Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammograms (CV). TEM showed that Pt grows layer-by-layer on the surface of PdSn cores and the thickness of the Pt shell is 0.2 nm, about 1-2 monolayers thick. Cyclic voltammetry results showed that PdSn/C nanoparticles, partially covered by Pt, have a better electrocatalystic performance than conventional PtRu/C and PtPdSn/C catalysts. Electrochemical active surface areas of the Pt-PdSn/C was 2.30 times larger than that of PtRu/C and 1.8 times higher than that of PtPdSn/C catalysts. The results showed that a metathetical reaction is an efficient way of preparing, low Pt loading, highly active electrocatalyst, for methanol oxidation, thus offering great potential for producing Pt-based electrocatalyst for direct methanol fuel cells on a large scale.

Keywords: Electrocatalyst, fuel cell, methanol oxidation, Pt-decorated


 

 

Full text available only in PDF format.

 

Acknowledgements

The authors would like to thank the State Natural Science Foundation of China (21163018), the Postdoctoral Science Foundation of China (20110490847) and the South African NRF (SUR2008060900021) for financially supporting this work.

 

References

1 A. Sarkar, A.V Murugan and A. Manthiram, J. Mater. Chem., 2009,19, 159-165.         [ Links ]

2 N. Kristian, Y. YanandX. Wang, Chem. Commun., 2008, 353, 353-355.         [ Links ]

3 E. Antolini, J.R.C. Salgado and E.R. Gonzalez, J. Power Sources, 2006, 160, 957-968.         [ Links ]

4 W. Wang, R. Wang, S. Ji, H. Feng, H. Wang and Z. Lei, J. Power Sources, 2010, 195, 3498-3503.         [ Links ]

5 H. Li, G. Sun, L. Cao, L. Jiang and Q. Xin, Electrochim. Acta, 2007, 52, 6622-6629.         [ Links ]

6 J. Otom, S. Nishida, H. Takahashi and H. Nagamoto, J. Electroanal. Chem., 2008, 615, 84-90.         [ Links ]

7 A. Caillard, C. Coutanceau, P. Brault, J. Mathias and J.M. Leger, J. Power Sources, 2008, 162, 66-73.         [ Links ]

8 V. Neburchilov and H. Wang, J. Zhang, Electrochem. Commun., 2007, 9, 1788-1792.         [ Links ]

9 M.K. Jeon, K.R. Lee, H. Daimon, A. Nakahara and S.I. Woo, Catal. Today, 2008, 132, 123-126.         [ Links ]

10 T. Huang, J. Liu, R. Li, W. Cai and A. Yu, Electrochem. Commun., 2009, 11, 643-646.         [ Links ]

11 Y. Wang, X. Wang and C.M. Li, Applied Catalysis B: Environmental, 2010, 99, 229-234.         [ Links ]

12 H. Daimon and Y. Kurobe, Catal. Today, 2006, 111, 182-190.         [ Links ]

13 S. Pasupathi and V. Tricoli, Electrochem. Solid-State Lett., 2006, 9, A167-A170.         [ Links ]

14 D. Tu, B. Wu, B. Wang, C. Deng and Y. Gao, Applied Catalysis B: Environmental, 2011, 103, 163-168.         [ Links ]

15 D.H. Lim, D.H. Choi, W.D. Lee, D.R. Park and H.I. Lee, Electrochem. Solid State Lett., 2007, 10, B87-B90.         [ Links ]

16 Z. Liu and X. Zhang, Electrochem. Commun., 2009, 11, 1667-1670.         [ Links ]

17 L. Luo, D. Wang, P.N. Mott, Y. Njoki, T. Lin, Z., He, B.N. Xu, I.S. Wanjana, C. Lim and J. Zhong, J. Adv. Mater., 2008, 20, 4342^347.         [ Links ]

18 N. Kristian, X. Wang, Electrochem. Commun., 2008, 10, 12-15.         [ Links ]

19 P. Fang, S. Duan, X. Lin, J.R. Anema, J. Li, O. Buriez, Y. Ding, F. Fan, D. Wu, B. Ren, Z. Wang, C. Amatore and Z. Tian, Chem. Sci., 2011, 2, 531-539.         [ Links ]

20 W. Wang, R.F. Wang, S. Ji., H.Q. Feng, Z.Q. Wang and J. Lei, Power Sources, 2010, 195, 3498.         [ Links ]

21 M.A.Watzky and R.G. Finke, J. Am. Chem. Soc., 1997, 119, 10382-10400.         [ Links ]

22 F. Fan, D.Liu, Y. Wu, S. Duan, Z. Xie, Z.Jiang and Z.Tian, J.Am. Chem. Soc., 2008, 130, 6949-6951.         [ Links ]

23 J. Hu, J. Li, B. Ren, D. Wu, S. Sun and Z. Tian, J. Phys. Chem. C, 2007, 111, 1105-1112.         [ Links ]

24 O. Holderer, T. Epicier, C. Esnouf and G. Fuchs, J. Phys. Chem. B, 2003, 107, 1723-1726.         [ Links ]

25 G. Schmid, Chem. Rev., 1992, 92,1709-1727.         [ Links ]

26 S. Alayoglu, A.U. Nilekar, M. Mavrikakis and B. Eichhorn, Nature, 2008, 7, 333-338.         [ Links ]

27 J. Zhu, F. Cheng and Z. Tao, J. Chen J. Phys. Chem. C, 2008, 112, 6337-6345.         [ Links ]

28 J. W. Guo, T.S. Zhao, J. Prabhuram, R. Chen and C.W. Wong, Electrochim. Acta, 2005, 51, 754-763.         [ Links ]

29 F. Liu, J.Y. Lee and W.J. Zhou, J. Phys. Chem. B, 2004, 108, 17959-17963.         [ Links ]

30 Z.Q. Tian, S.P. Jiang, Y.M. Liang and P.K. Shen, J. Phys. Chem. B, 2006, 110, 5343-5350.         [ Links ]

31 J. Perez, E.R. Gonzalez and E.A.Ticianelli, Electrochim. Acta, 1998, 44, 1329-1339.         [ Links ]

32 A. Pozio, M.D. Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources, 2002, 105, 13-19.         [ Links ]

33 F.B. Su, C.K. Poh, Z.Q. Tian, G.W. Xu, G.Y. Koh, Z. Wang, Z.L. Liu and J.Y. Lin, Energy Fuels 2010, 24, 3727-3732.         [ Links ]

34 T.H.M. Housmans and M.T.M. Koper, J. Phys. Chem. B, 2003, 107, 8557-8567.         [ Links ]

35 K. Wang, H.A. Gasteiger, N.M. Markovic and P.N. Ross, Electrochim. Acta, 1996, 41, 2587-2593.         [ Links ]

36 E. Antolini and E.R. Gonzalez, Electrochim. Acta 2010, 56,1-14.         [ Links ]

37 C. Panja, N. Saliba and B.E. Koel, Surf. Sci., 1998, 395, 248-259.         [ Links ]

38 Y. Liu, M. Chi, V. Mazumder, K.L. More, S. Soled, J.D. Henao and S. Sun. Chem. Mater., 2011, in press (doi: 10.1021/cm2014785).         [ Links ]

39 F. Kadirgan, S. Beyhan and T. Atilan, Int. J. Hydrogen Energy, 2009, 34, 4312-4320.         [ Links ]

40 K. Shukla, A.S. Aricö, K.M. El-Khatib, H. Kim, P.L. Antomucci and V. Antomucci, Appl. Sur. Sci., 1999, 137, 20-29.         [ Links ]

41 Y.J. Kim ,W.H. Hong, S.I. Woo and H.K. Lee, J. Power Sources, 2006, 159, 491-500.         [ Links ]

 

 

Received 8 December 2011
Revised 16 February 2012
Accepted 13 March 2012

 

 

* To whom correspondence should be addressed. E-mail: sji@uwc.ac.za (S.J.) / wrf38745779@26.com (R.W.)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License