SciELO - Scientific Electronic Library Online

 
vol.65Alum-promoted synthesis of 1,8-dioxo-octahydroxanthenes in waterSimultaneous multi-element electrothermal atomic absorption determination using a low resolution CCD spectrometer and continuum light source: The concept and methodology author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

S.Afr.j.chem. (Online) vol.65  Durban  2012

 

RESEARCH ARTICLE

 

The synthesis of nitrogen-doped multiwalled carbon nanotubes using an Fe-Co/CaCO3 catalyst

 

 

Z.N. TetanaI; S.D. MhlangaI; G. BepeteI; R.W.M. KrauseII; N.J. CovilleI, *

IDST/NRF Centre of Excellence in Strong Materials and the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, WITS, 2050, South Africa
IIDST/NRF Centre of Excellence in Strong Materials, Department of Chemical Technology, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa

 

 


ABSTRACT

A CVD method was used to prepare high-quality nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) using acetonitrile as the nitrogen and carbon source and acetylene as a carbon source over an Fe-Co/CaCO3 catalyst in the temperature range 700-850 °C. This represents a continuation of earlier work in which Fe-Co on CaCO3 was used to make undoped carbon nanotubes. The effect of synthesis parameters (growth temperature and CH3CN vaporization temperature) on the yield, size, quality, morphology and thermal stability of the N-MWCNTs was studied. The resulting materials were characterized by TEM, SEM, TGA, BET, XPS, CN elemental analysis and Raman spectroscopy. TEM analysis revealed that the nanotubes exhibit bamboo-like structures with rough surfaces and a relatively uniform diameter. The bamboo compartment distance decreased with increase in synthesis temperature due to the increased nitrogen content in N-MWCNTs. The SEM examination showed that at high synthesis temperatures carbon spheres (CSs) with chain-like morphology and large sizes were also formed along with the N-MWCNTs. The XPS and CN elemental analysis revealed that nitrogen atoms were successfully doped into the carbon walls. The amount of nitrogen incorporated in the N-MWCNTs varied with increasing growth time and CH3CN vaporization temperature.

Keywords: Carbon nanotubes, CVD synthesis, nitrogen doping, acetonitrile, Fe-Co/CaCO3 catalyst


 

 

Full text available only in PDF format.

 

Acknowledgements

The authors would like to thank the National Research Foundation, DST/NRF Centre of Excellence in Strong Materials, CSIR and the University of the Witwatersrand for financial support. We gratefully acknowledge the Department of Physics and Astronomy at Rutgers University, USA, for XPS assistance and M.F. Philpott from the ARC- Institute for Soil, Climate and Water, for C and N elemental analysis. We also thank R.M. Erasmus for his assistance with Raman spectroscopy analysis. The technical support given by the University of the Witwatersrand Microscopy and Microanalysis Unit is also appreciated (special thanks are due to M.J. Witcomb, A. Ziegler and the late A.R. Seema).

 

References

1 H.W. Kroto, J.R. Heath, S.C. O' Brien, R.F. Curl and R.E. Smalley, Nature, 1985, 318, 162-163.         [ Links ]

2 S. Iijima, Nature, 1991, 354, 56-58.         [ Links ]

3 (a)D.Ugarte, Nature, 1992, 359,707-709;         [ Links ] (b)Z.C. Kang and Z.L.Wang, Philos. Mag. B, 1996, 73, 905-929;         [ Links ] (c) Z.L. Wang and Z.C. Kang J. Phys. Chem., 1996, 100, 17725-17731.         [ Links ]

4 (a) N. Sano, H. Wang, M. Chhowalla, I. Alexandrou and G.A.J. Amaratunga, Nature, 2001, 414, 506-507;         [ Links ] (b) X.H. Chen, F.M. Deng, J.X. Wang, H.S. Yang, G.T. Wu and X.B. Zhang, Chem. Phys. Lett., 2001, 336, 201-204;         [ Links ] (c) X. Bing-she, New Carbon Mater., 2008, 23, 289-301.         [ Links ]

5 (a) A. Shaikjee, P.J. Franklyn and N.J. Coville, Carbon, 2011, 49, 2950-2959;         [ Links ] (b) A. Shaikjee and N.J. Coville, Small, 2011, 49, 2950-2959;         [ Links ] A. Shaikjee and N.J. Coville, 2012, Mater. Lett., 2012, 68, 273-276.         [ Links ]

6 (a) S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett., 1999, 309,165-170;         [ Links ] (b) H. Wang, M. Chhowalla, N. Sano, S. Jiaand G.A.J. Amaratunga, Nanotechnology, 15, 2004, 546-550.         [ Links ]

7 P. Serp, M. Corrias and P. Kalck, Appl. Catal., 2003, 253, 337-358.         [ Links ]

8 M.C. Bahome, L.L. Jewel, D. Hildebrandt, D. Glasser and N.J. Coville, Appl. Catal., A, 2005, 287, 60-67.         [ Links ]

9 Y. Maeda, S. Kimura, M. Kanda, Y. Hirashima, T. Hasegawa, T. Wakahara, Y.F. Lian, T. Nakahodo, T. Tsuchiya and T. Akasaka, J. Lu, X.Zhang, Z. Gao, Y. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto and R. Saito, J. Am. Chem. Soc., 2005, 127, 10287-10290.         [ Links ]

10 M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, H. Terrones, J.-C. Charlier, G. Dresselhaus and M.S. Dresselhaus, Mater. Today Magazine, 2004, 7, 30-45.         [ Links ]

11 Q. Cao and J.A. Rogers, Adv. Mater., 2009, 21, 29-53.         [ Links ]

12 C. Liu, Y.Y. Fan,M. Liu, H.T. Cong, H.M. Cheng and M.S. Dresselhaus, Science, 1999, 286, 1127-1129.         [ Links ]

13 H.M. Cheng, Q.H. Yong and C. Liu, Carbon, 2001, 39, 1447-1454.         [ Links ]

14 H. Dai, N. Franklin and J. Han, Appl. Phys. Lett., 1998, 73, 1508-1510.         [ Links ]

15 N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579-1581.         [ Links ]

16 R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B, 1992, 46, 1804-1811.         [ Links ]

17 X. Wang, Y. Liu, G. Yu, C. Xu and J. Zhang, J. Phys. Chem. B., 2001, 105, 9422-9425.         [ Links ]

18 J.Y. Lao, W.Z. Li, J.G. Wen and Z.F. Ren, Appl. Phys. Lett., 2002, 80, 500-502.         [ Links ]

19 J.W. Jang, C.E. Lee, S.C. Lyu, T.J. Lee and C.J. Lee, Appl. Phys. Lett., 2004, 84, 2877-2879.         [ Links ]

20 O. Stephan and P. Ajayan, Science, 1994, 266, 1863-1865.         [ Links ]

21 R. Czerw, M. Terrones, J.-C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhleand D.L. Carroll, Nano Lett., 2001, 9, 457-460.         [ Links ]

22 M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.-C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger and H. Terrones, Appl. Phys. A Mater., 2002, 74, 355-361.         [ Links ]

23 M. Yudasaka, R. Kikuchi, Y. Ohki and S. Yoshimura, Carbon, 1997, 35, 195-201.         [ Links ]

24 R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, G. Raina, J.P. Zhang, A.K. Cheetham and C.N.R. Rao, Chem. Phys. Lett., 1998, 287, 671-676.         [ Links ]

25 K. Gong, F. Du, Z. Xia, M. Durstockand L. Dai, Science, 2009, 323, 760-764.         [ Links ]

26 E.N. Nxumalo, V.O. Nyamori and N.J. Coville, J. Organomet. Chem., 2008, 693, 2942-2948.         [ Links ]

27 A.L. Elias, J.C. Carrero-Sanchez, H. Terrones, M. Endo, J.P. Lacletteand and M. Terrones, Small, 2007, 3, 1723-1729.         [ Links ]

28 M. Glerup, J. Steinmetz, D. Samaile, O. Stephan, S. Enouz,A. Loiseau, S. Rothand P. Bernier, Chem. Phys. Lett., 2004, 387, 193-197.         [ Links ]

29 Y. Zhang, H. Gu, K. Suenaga and S. Iijima, Chem. Phys. Lett, 1997, 279, 264-268.         [ Links ]

30 D. Golberg Y. Bando, W. Han, K. Kurashima and T. Sato, Chem. Phys. Lett., 1999, 308, 337-342.         [ Links ]

31 S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee and J. Lin, Phys. Rev. B, 2006, 73, 045402/1-045402/6.         [ Links ]

32 M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton, Nature, 1997, 388, 52-55.         [ Links ]

33 K. Suenaga, M. Yudasaka, C. Colliex and S. Iijima, Chem. Phys. Lett., 2000, 316, 365-372.         [ Links ]

34 Y. Hao, L. Qingwen, Z. Jinand Liu. Zhongfan, Chem. Phys. Lett., 2003, 380, 347-351.         [ Links ]

35 R. Xue, Z. Sun, L. Su and X. Zhang, Catal. Lett, 2010, 135, 312-320.         [ Links ]

36 K. Chizari, I. Janowska, M. Houllé, I. Florea, O. Ersen, T. Romero, P Bernhardt, M.J. Ledoux and, C. Pham-Huu, Appl. Catal., A, 2010, 380, 72-80.         [ Links ]

37 K.-Y. Chun, H.S. Lee and C.J. Lee, Carbon, 2009, 47, 169-177.         [ Links ]

38 W.-X. Lv, K.-Y. Shi, L. Li and S.-Z. Shao, Microchim. Acta, 2010, 170, 91-98.         [ Links ]

39 C.J. Lee and J. Park, Appl. Phys. Lett., 2000, 77, 3397-3399.         [ Links ]

40 M.H. Kuang, Z.L. Wang, X.D. Bai, J.D. Guo and E.G. Wang, Appl. Phys. Lett., 2000, 76, 1255-1257.         [ Links ]

41 S.D. Mhlanga, K.C. Mondal, R. Carter, M.J. Witcomb and N.J. Coville, S. Afr. J. Chem., 2009, 62, 67-76.         [ Links ]

42 C.J. Lee. J. Park and J.A. Yu, Chem. Phys. Lett, 2002, 360, 250-255.         [ Links ]

43 C.-T. Hsieh, Y.-T. Lin, J.-Y. Lin and J.-L. Wei, Mater. Chem. Phys., 2009, 114, 702-708.         [ Links ]

44 E. Couteau, K. Hernadi, J.W. Seo, L. Thin-Nga, Cs. Mikó, R. Gaál and L. Forró, Chem. Phys. Lett., 2003, 378, 9-17.         [ Links ]

45 C.H. See, A. Husin and A.T. Harris, Chem. Eng. Technol., 2009, 32, 1280-1284.         [ Links ]

46 J. Cheng, X. Zhang, Z. Luo, F. Liu, Y. Ye, W. Yin, W. Liu and Y. Han, Mater. Chem. Phys., 2006, 95, 5-11.         [ Links ]

47 H. Kathyayini, N. Nagaraju, A. Fonseca and J.B. Nagy, J. Mol. Catal., 2004, 223, 129-136.         [ Links ]

48 E. Dervishi, Z. Li, A.R. Biris, D. Lupu, S.S. T trigwell and A.S. Biris, Chem. Mater., 2007, 19, 179-184.         [ Links ]

49 T.C. Schmitt, A.S. Biris, D.W. Miller, A.R. Biris, D. Lupu, S.S. Trigwell and, Z.U. Rahman, Carbon, 2006,44, 2032-2038.         [ Links ]

50 P. Piedigrosso, Z. Konya, J.-F. Colomer, A. Fonseca, G. van Tendeloo and J.B. Nagy, Phys. Chem. Chem. Phys., 2000, 2, 163-170.         [ Links ]

51 D. Pradhan and M. Sharon, Mater. Sci. Eng. B., 2002, 96, 24-28.         [ Links ]

52 A.-C. Dupuis, Prog. Mater. Sci., 2005, 50, 929-961.         [ Links ]

53 R.M. Yadav, P.S. Dobal, T. Shripathi, R.S. Katiyar and O.N. Srivastava, Nanoscale Res. Lett., 2009, 4, 197-203.         [ Links ]

54 P. Ghosh, M. Zamri, M. Subramanian, T. Soga, T. Jimbo, R. Katoh and M. Tanemura, J. Phys. D: Appl. Phys., 2008, 41, 155405-155412.         [ Links ]

55 A.A. Deshmukh, S.D. Mhlanga and N.J. Coville, Mater. Sci. Eng. R, 2010, 70, 1-28.         [ Links ]

56 C.J. Lee. S.C. Lyu, H.W. Kim, J.H. Lee and K.I. Cho, Chem. Phys. Lett., 2002, 359, 115-120.         [ Links ]

57 J.-Y. Miao, D.W. Hwang, K.V. Narasimhulu, P.-I. Lin, Y.-T. Chen, S.-H. Lin and L.-P. Hwang, Carbon, 2004, 42, 813-822.         [ Links ]

58 (a) A. Romero, A. Garrido, A. Nieto-Márquez, A. Raquel de la Osa, A. de Lucas and J.L. Valverde, Appl. Catal., A, 2007, 319, 246-258;         [ Links ] (b)M.M. Shaijjumon and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30, 311-317;         [ Links ] (c) S. Lim, A. Shimizu, S.-H. Yoon, Y. Korai and I. Mochida, Carbon, 2004, 42, 1279-1283.         [ Links ]

59 M. Chen, H.-W. Yu, J.-H. Chen and H.-SKoo, Diamond Relat. Mater., 2007, 16, 1110-1115.         [ Links ]

60 M.A.M. Motchelaho, H. Xiong, M. Moyo, L.L. Jewel and N.J. Coville, J. Mol. Catal. A: Chem., 2011, 335, 189-198.         [ Links ]

61 J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst and, V. Meunier, Carbon, 2011, 49, 2581-2602.         [ Links ]

62 B.J. Landi, C.D. Cress, C.M. Evans and R.P. Raffaelle, Chem. Mater., 2005, 17, 6819-6834.         [ Links ]

63 Z.J. Shi, Y.F. Lian, F.H. Liao, X.H. Zhou, Z.N. Gu, Y. Zhang, S. Iijima, H.D. Li, K.T. Yue and S.L. Zhang, J. Phys. Chem. Solids, 2000, 61, 1031-1036.         [ Links ]

64 Q. Liu, W. Ren, F. Li, H. Cong and H.-M. Cheng, J. Phys. Chem. C, 2007, 111, 5006-5013.         [ Links ]

65 I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley and R.H. Hauge, J. Phys. Chem. B, 2001, 105, 8297-8301.         [ Links ]

66 S.B. McKee and K.S. Vecchio, J. Phys. Chem. B, 2006, 110, 1179-1186.         [ Links ]

67 E.N. Nxumalo, P.J. Letsoalo, L.M. Cele and N.J. Coville, J. Organomet. Chem., 2010, 695, 2596-2602.         [ Links ]

68 (a) X. Ma and E.G. Wang, Appl. Phys. Lett., 2001, 78, 978-980;         [ Links ] (b) S. Maldonado, S. Morin and K.J. Stevenson, Carbon, 2006, 44, 1429-1437;         [ Links ] (c) S. Choi, K.H. Park, S. Lee and K.H. Koh, J. Appl. Phys., 2002, 92, 4007-4011.         [ Links ]

69 Z. Li, E. Dervishi, Y. Xu, V Saini, M. Mahmood, O.D. Oshin, A.R. Biris and A.S. Biris, Catal. Lett., 2009, 131, 356-363.         [ Links ]

70 D.K. Singh, P.K. Iyer and P.K. Giri, J. Appl. Phys., 2010, 108, 084313/1-084313/10.         [ Links ]

71 S. Dube and N.J. Coville, to be published.

72 G.F. Malgas, C.J. Arendse, N.P. Cele and F.R. Cummins, J. Mater. Sci., 2008, 43, 1020-1025.         [ Links ]

73 S. van Dommele, A. Romero-Izquirdo, R. Brydson, K.P. de Jong and J.H. Bitter, Carbon, 2008, 46, 138-148.         [ Links ]

74 H.C. Choi, S.Y. Bae, W.S. Jang, J. Park, H.J. Song, H.-J. Shin, H. Jung and J.-P. Ahn, J. Phys. Chem. B, 2005, 109, 1683-1688.         [ Links ]

75 P. Ayala, A. Grüneis, T. Gemming, B. Büchner, M.H. Rümeli, D. Grimm, J. Schumann, R. Kaltofen, F.L. Freire Jr, H. D. Fonseca Filho and T. Pichler, Chem. Mater., 2007, 19, 6131-6137.         [ Links ]

76 J.R. Pels, F. Kapteijn, J.A. Moulijin, Q. Zhu and K.M. Thomas, Carbon, 1995, 33, 1641-1653.         [ Links ]

77 A.E. Shalagina, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon and V.A. Ushakov, Carbon, 2007, 45, 1808-1820.         [ Links ]

78 M. He, S. Zhou, J. Zhang, Z. Liu and C. Robinson, J. Phys. Chem. B, 2005, 109, 9275-9279.         [ Links ]

79 C. Tang, Y. Bando, D. Golberg and F. Xu, Carbon, 2004, 42, 2625-2633.         [ Links ]

 

 

Received 11 August 2011
Revised 12 December 2011
Accepted 30 January 2012

 

 

Submitted by invitation to celebrate 2011 the 'International Year of Chemistry'.
* To whom correspondence should be addressed. E-mail: neil.coville@wits.ac.za

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License