SciELO - Scientific Electronic Library Online

 
vol.64Preparation of CNx/carbon nanotube intramolecular junctions by switching gas sources in continuous chemical vapour depositionSimultaneous determination of metals in coal with low-resolution continuum source atomic absorption spectrometer and filter furnace atomizer índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Chemistry

versión On-line ISSN 1996-840X
versión impresa ISSN 0379-4350

S.Afr.j.chem. (Online) vol.64  Durban  2011

 

RESEARCH ARTICLE

 

Electrical and optical properties of nanosized perovskite-type La0.5Ca0.5MO3 (M=Co,Ni) prepared using a sol-gel method

 

 

Mohammad YazdanbakhshI; Haman TavakkoliI; Seyed Mohammad HosseiniII, *

IDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91799, Iran
IIMaterials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad 91799, Iran

 

 


ABSTRACT

In this paper the uniform nanopowders of La0.5Ca0.5CoO3-δ and La0.5Ca0.5NiO3-δ (LCCO and LCNO) were synthesized from nitrates of the constituent metal ion, citric acid (CA), and ethylene glycol (EG) by the combined citrate-ethylene glycol (EG) method. These nanopowders were also characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), SEM-EDX analysis and Brunauer-Emmett-Teller (BET) method XRD results show that single perovskite phase was completely formed after calcination at 750 °C. Fourier transform infrared (FTIR) spectra were measured for the xerogels and powder samples after calcination. In addition, the TEM images show that the average particle size of nanoparticles is approximately 25-32 nm in diameter. The ultraviolet (UV) spectrum was used to calculate the absorption coefficient (a) as a function of photon energy (hv) and the obtained results indicate that the optical band gap energy (Eg) for LCNO sample is smaller than that of LCCO. Finally, the temperature dependence of the specific resistivity of LCCO and LCNO sintered at 1100 °C was compared and revealed that the resistivity of both compounds decreases exponentially by increasing the temperature.

Keywords: La0.5Ca0.5MO3, perovskite, sol-gel process, nanopowder, optical properties


 

 

Full text available only in pdf format.

 

Acknowledgements

The authors wish to thank the financial support of Ferdowsi University of Mashhad for this project (P439) and are grateful to Materials and Electroceramics Laboratory of department of physics for electrical measurements. We also acknowledge R. Pesian and N. Hashemian for taking TEM images and EDX analysis at the central lab of Ferdowsi University of Mashhad.

 

References

1 Z. Gao and R. Wang, Appl. Catal. B: Environ., 2010, 98, 147-153.         [ Links ]

2 J. Gao, F.X. Hu and H. Yao, Appl. Surf. Sci, 2006, 252, 5521-5524.         [ Links ]

3 Q.G. Chi, W.L. Li, Y. Zhao, and W.D. Fei, J. Sol-Gel Sci. Technol., 2010, 54, 286-291.         [ Links ]

4 Z. Brankovic, K. Duris, A. Radojkovic, S. Bernik, Z. Jaglicic, M. Jagodic, K. Vojisavljevic and G. Brankovic, J. Sol-Gel Sci. Technol., 2010, 55, 311-316.         [ Links ]

5 Y.D. Zhen, S.P. Jiang, S. Zhang and V. Tan, J. Eur. Ceram. Soc., 2006, 26, 3253-3264.         [ Links ]

6 S.P. Jiang, J. Mater. Sci., 2008, 43, 6799-6833.         [ Links ]

7 I. Krkljus, Z. Brankovic, K. Djuris, V Vukotic, G. Brankovic and S. Bernik, Int. J. Appl. Ceram. Technol., 2008, 5, 548-556.         [ Links ]

8 B.A. Van Hassel, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya and H.J.M. Bouwmeester, Solid State Ionics, 1993, 66, 41-47.         [ Links ]

9 Z. Hu, Y. Yang, X. Shang and H. Pang, Mater. Lett. 2005, 59, 1373-1377.         [ Links ]

10 T. Hirano, H. Purwanto, T. Watanabe and T. Akiyama, J. Alloys Compd, 2007, 441, 263-266.         [ Links ]

11 P.M. Woodward, Acta Crystall. B, 1997, 53, 44-66.         [ Links ]

12 K. Tezuka, Y. Hinatsu, A. Nakamura and T. Inami, J. Solid State Chem, 1998, 141, 404-410.         [ Links ]

13 A.J. Zhou, T.J. Zhu and X.B. Zhao, Mater. Sci. Eng. B, 2006, 128, 174-178.         [ Links ]

14 V. Szabo, M. Bassir, A. VanNeste and S. Kaliaguine, Appl. Catal. B: Environ, 2002, 37, 175-180.         [ Links ]

15 S. Nakayama, M. Okazaki, Y.L. Aung and M. Sakamoto, Solid State Ionics, 2003, 158, 133-139.         [ Links ]

16 V.V. Srdic, R.P. Omorjan and J. Seydel, Mater. Sci. Eng. B, 2005, 116, 119-124.         [ Links ]

17 N.P. Bansal and Z. Zhong, J. Power Sources, 2006, 158, 148-153.         [ Links ]

18 D. Berger, V. Fruth, I. Jitaru and J. Schoonman, Mater. Lett, 2004, 58, 2418-2422.         [ Links ]

19 D. Berger, C. Matei, F. Papa, G. Voicu and V. Fruth, Prog. Solid State Chem., 2007, 35, 183-191.         [ Links ]

20 M. Pechini, US Patent (1967) No. 3,330,697.         [ Links ]

21 S. Cizauskaite and A. Kareiva, Cent. Europ. J. Chem.,2008, 6, 456-464.         [ Links ]

22 N.L. Petrova, D.S. Todorovsky and V.G. Vasileva, Cent. Europ. J. Chem., 2005, 3, 263-278.         [ Links ]

23 P. Song, Q. Wang and Z. Yang, Sensors and Actuators B, 2009, 141, 109-115.         [ Links ]

24 E.R. Leite, C.M.G. Sousa, E.Longo and J.A. Varela, Ceram. Int., 1995, 21, 143-152.         [ Links ]

25 W. Nimmo, N.J. Ali, R.M. Brydson, C. Calvert, E. Hampartsoumian, D. Hind and S.J. Milne, J. Am. Ceram. Soc., 2003, 86, 1474-1480.         [ Links ]

26 A. Sakar-Deliormanl, E. Celik and M. Polat, Ceram. Int., 2009, 35, 503-508.         [ Links ]

27 J. Kim and I. Honma, Electrochim. Acta, 2004, 49, 3179-3183.         [ Links ]

28 M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi and W. Ueda, Chem. Mater., 2007, 19, 5779-5785.         [ Links ]

29 S. Liu, X. Qian and J. Xiao, J. Sol-Gel Sci. Technol., 2007, 44, 187-193.         [ Links ]

30 P.N. Kuznetsov, L.I. Kuznetzova, A.M. Zhyzhaev, G.L. Pashkov and V V. Boldyrev, Appl. Catal. A, 2002, 227, 299-307.         [ Links ]

31 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Plenum Press, New York, 1978.         [ Links ]

32 D.A, Neumayer and E.J. Cartier, Appl. Phys, 2001, 90, 1801-1808.         [ Links ]

33 Y. Hao, J. Li, X. Yang, X. Wang and L. Lu, Mater. Sci. Eng. A, 2004, 367, 243-247.         [ Links ]

34 R.N. Singh and B. Lal, Int. J. Hydrogen Energy, 2000, 27, 45-55.         [ Links ]

35 N.A. Merino, B.P. Barbero, P. Grange and L.E. Cadus, J. Catal., 2005, 231, 232-244.         [ Links ]

36 Z. Mao, G. Xu, H. Yan, B. Wang, X. Qiu and Y. Zhang, Phys. Rev. B,1998, 58, 15116-15119.         [ Links ]

37 A.J. Zhou, T.J. Zhu and X.B. Zhao, Mater. Sci. Eng. B, 2006, 128, 174-178.         [ Links ]

38 N. Fujihira, T. Sei and T. Tsuchiya, J. Sol-Gel Sci. Technol., 1995, 4, 135-140.         [ Links ]

39 M. Losurdo, A. Sacchetti, P. Capezzuto, G. Bruno, L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno and E. Tondello, Appl. Phys. Lett., 2005, 87.         [ Links ]

40 J. Yang, T. Zhang, M. Ni, L. Ding and W.F. Zhang, Appl. Surf. Sci., 2009, 256, 17-20.         [ Links ]

 

 

Received 28 March 2011
Revised 19 June 2011
Accepted 29 June 2011

 

 

* To whom correspondence should be addressed. E-mail: sma_hosseini@yahoo.com

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons