SciELO - Scientific Electronic Library Online

 
vol.64Characterization and oxidative addition reactions of different rhodium and iridium triazolato complexesSynthesis and characterization of new bis-symmetrical adipoyl, terepthaloyl, chiral diimido-di-L-alanine diesters and chiral phthaloyl-L-alanine ester of tripropoxy p-tert-butyl calix[4]arene and study of their hosting ability for alanine and Na+ índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Chemistry

versão On-line ISSN 1996-840X
versão impressa ISSN 0379-4350

S.Afr.j.chem. (Online) vol.64  Durban  2011

 

RESEARCH ARTICLE

 

Discrimination between O-H...N and O-H...O=C complexes of 3-methyl-4-pyrimidone and methanol. A matrix-isolation FT-IR and theoretical DFT/B3LYP investigation

 

 

Mayaliwa MuzomweI; Bram BoeckxII; Guido MaesII, *; Okuma E. KasendeI, *

IFaculty of Sciences, University of Kinshasa, B.P.190 Kinshasa XI, Democratic Republic of Congo
IIDepartment of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium

 

 


ABSTRACT

FT-IR matrix-isolated spectra for 3-methyl-4-pyrimidone and its H-bonded complexes with methanol in Ar were studied with the aim of discriminating between O-H...N and O-H...O=C complexes. Theoretical calculations were carried out using the DFT/B3LYP/6-31 + G(d) methodology in an attempt to predict the preferred interaction site of the 3-methyl-4-pyrimidone molecule with proton donors. The observed frequency decrease of the v(C=O) mode of 3-methyl-4-pyrimidone and the appearance of a broad v(OH...O) band in the spectrum of the complex with methanol suggest that H-bonding with methanol occurs at the carbonyl group. Computed binding energies of the hydrogen-bonded complexes (ΔEc) and computed intermolecular distances (r(O...H)) confirm that the O-H...O=C complex is preferred with methanol. However, for H-bonding with stronger acids such as HCl, the computational data suggest that the H-bonding occurs at the N1 ring atom of 3-methyl-4-pyrimidone.

Keywords: Matrix-isolation, 3-methyl-4-pyrimidone, methanol, FT-IR spectroscopy, DFT/B3LYP calculations


 

 

Full text available only in pdf format.

 

Acknowledgements

The authors acknowledge the Department of Chemistry of KULeuven for financial support. Two of us (O.E. Kasende and M. Muzomwe) would like to thank Professor Guido Maes for his hospitality. The support of the stay of one of us (O.E. Kasende) as Visiting Fellow at KULeuven by the Interfaculty Council for the Development Cooperation Specialisation Programme is appreciated. This research was partly conducted utilizing the high-performance computational resources provided by the University of Leuven.

 

References

1. O. Kasende and Th. Zeegers-Huyskens, J. Mol. Struct., 1981, 75, 201-207.         [ Links ]

2. O. Kasende and Th. Zeegers-Huyskens, J. Phys. Chem, 1984, 88, 2636-2642.         [ Links ]

3. O. Kasende and Th. Zeegers-Huyskens, Spectroscopy Letters, 1984, 17, 783-801.         [ Links ]

4. B.N. Solomonov, M.A. Varfolomeev and D.I. Abaidullina, Vibrational Spectroscopy, 2007, 43, 380-386.         [ Links ]

5. B.N. Solomonov, M.A. Varfolomeev, V.B. Novikov and A. Eklimo-vitskii, Spectrochim. Acta A, 2006, 64, 405-411.         [ Links ]

6. A.Dkhissi, L.Houben, J.Smets, L.Adamowicz and G.Maes, J. Phys. Chem. A., 2000, 104, 9785-9792.         [ Links ]

7. J. Smets, A Combined Matrix-isolation FT-IR and Ab Initio 6-31 + + G** Study of the Tautomeric and H-bonding Properties of Molecules Modeling Cytosines and Isocytosines, PhD thesis, University of Leuven, Belgium, 1993.         [ Links ]

8. J. Smets, J. Destexhe, L. Adamowicz and G.Maes, J. Phys. Chem. B, 1997, 101, 6583-6599.         [ Links ]

9. M. Graindourze, T. Grootaers, J. Smets, Th. Zeegers-Huyskens and G. Maes, J. Mol. Struct., 1991, 243, 37-60.         [ Links ]

10. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume, National Bureau of Standards, Washington, 1972.         [ Links ]

11. M. Weimann, M. Farnik, M.A. Suhm, M.E. Alikhani and J. Sadlej, J. Mol. Struct., 2006, 790, 18-26.         [ Links ]

12. D.S. Bulgarevich and K. Otake, J. Chem. Phys., 2002, 116, 1995-2003.         [ Links ]

13. R.W. Larsen and M.A. Suhm,J. Chem. Phys., 2006, 125, 154314-154321.         [ Links ]

14. I. Mukhopadhyay, Spectrochim. Acta A, 1998, 54, 1381-1389.         [ Links ]

15. M. Jablonski and A.J. Sadlej, J. Phys. Chem. A., 2007, 111, 3423-3431.         [ Links ]

16. U. Buck and F. Huisken, Chem. Rev., 2000, 100, 3863-3890.         [ Links ]

17. D.S. Bulgarevich, Y. Horikawa and T. Sako J. Supercrit. Fluids., 2008, 46, 206-210.         [ Links ]

18. G. Maes, Bull. Soc. Chim. Belg., 1981, 90, 1093-1107.         [ Links ]

19. M. Graindourze, J. Smets and Th. Zeegers-Huyskens, J. Mol. Struct., 1990, 222, 345-365.         [ Links ]

20. F.H.S. Curd and D.N. Richardson, J. Chem. Soc., 1955, 1853-1861.         [ Links ]

21. C. Lee, W. Yang and R.G. Parr, Phys. Rev., 1980, B37, 785-792.         [ Links ]

22. A.D. Becke, J. Chem. Phys., 1993, 98, 5648-5648.         [ Links ]

23. R.G. Parr and W. Yang, Eds., Density-Functional Theory ofAtoms and Molecules, Oxford University Press, New York, 1989.         [ Links ]

24. Z. Latajka and Y. Bouteiller, J. Chem. Phys., 1994, 101, 9793-9799.         [ Links ]

25. J.J. Novoa, C. Sosa, J. Phys. Chem., 1995, 99, 15837-15845.         [ Links ]

26. M. Planas, C. Lee and J.J. Novoa, J. Phys. Chem., 1996, 100, 16495-16501.         [ Links ]

27. J. Lundell and Z. Latajka, J. Phys. Chem., 1997, 101, 5004-5009.         [ Links ]

28. O. Mo, M. Yanez and J. Elguero, J. Chem. Phys., 1997, 107, 3592-3601.         [ Links ]

29. A. Dkhissi, L. Adamowicz and G. Maes, J. Phys. Chem., 2000, 104, 2112-2119.         [ Links ]

30. A. Dkhissi, L. Adamowicz and G. Maes, Chem. Phys. Lett., 2000, 324, 127-13341        [ Links ]

31. S.I. Boyd and R.J. Boyd, J. Chem. Theory Comput., 2007, 3, 54-61.         [ Links ]

32. D. Bing, J.-L. Kuo, K-I. Suhara, A. Fujii and N. Mikami J. Phys. Chem. A., 2009, 113, 2323-2332.         [ Links ]

33. R.D. Parra and X.C. Zeng, J. Chem. Phys., 1999, 110, 6329-6338.         [ Links ]

34. S.M. Mejia, J.F. Espinal and F.-S. Mondragon, J. Mol. Struct. Theochem, 2009, 901, 186-193.         [ Links ]

35. M.A. Palafox, N. Iza, M. de la Fuente and R. Navarro, J. Phys. Chem. B, 2009, 113, 2458-2476.         [ Links ]

36. G. Chalasinski and M. Szczesniak, Chem. Rev., 1994, 94, 1723-1765.         [ Links ]

37. R. Ramaekers, G. Maes, L. Adamowicz and A. Dkhissi, J. Mol. Struct., 2001, 560, 205-221.         [ Links ]

38. M.D. Halls, J. Velkowski and H.B. Schlegel, Theor. Chem. Acc., 2001, 105, 413-421.         [ Links ]

39. G. Rauhut and P. Pulay, J. Phys. Chem., 1995, 99, 3093-3100.         [ Links ]

40. J. Florian and J. Leszcynski, J. Phys. Chem, 1996, 100, 5578-5589.         [ Links ]

41. M. Gutowski, F.B. van Duijneveldt, J.G.C.M. van Duijneveldt-van de Rijdt and J.H. van Lenthe, J. Chem. Phys., 1993, 98, 4728-4738.         [ Links ]

42. S.F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-556.         [ Links ]

43. M.J.T.G.W. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant; J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V Bakken, C. Adamo, J. Jaramilo, R. Gomperts, R.E. Stratmann, O.Y.Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.I. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford, CT, 2004.         [ Links ]

44. G. Maes and J. Smets, J. Phys. Chem., 1993, 97, 1818-1825        [ Links ]

45. R.M. Bentwood, A.J. Barnes and W.J.Orville-Thomas, J. Mol. Spectrosc., 1980, 84, 391-404.         [ Links ]

46. M.J. Wojcik, H. Rostkowska, K. Szczepaniak, W.B. Person, Spectrochim. Acta. A, 1989, 45, 499-502.         [ Links ]

47. J. Smets, A. Destexhe, L. Adamowicz and G. Maes, J. Phys. Chem. B., 1997, 101, 6583-6599.         [ Links ]

48. F. Buyl. J. Smets, G. Maes and L. Adamowicz, J. Phys. Chem, 1995, 99, 14967-14979.         [ Links ]

49. E. Gornicka, J.E. Rode, E.D. Raczynska, B. Dasiewicz and J.Cz. Dobrowolski, Vibrational Spectroscopy, 2004, 36, 105-115.         [ Links ]

50. A. Engdahl and B. Nelander, J. Chem. Phys., 1987, 86, 4831-4838.         [ Links ]

51. P. Hobza and Z. Havlas, Chem. Rev., 2000, 100, 4253-4264.         [ Links ]

52. M. Muzomwe, Etude théorique et par spectrophotométrie IR-TF en matrice inerte d=argon des associations moléculaires des alcools, phenols, naphtols et des methylpyrimidones, PhD thesis (in preparation), University of Kinshasa, RD Congo        [ Links ]

53. L. Houben, K. Schoone and G. Maes, Vibrational Spectroscopy 1996, 10, 147-159.         [ Links ]

54. M. Weimann, M. Farnik, M.A. Suhm, M.E. Alikhani and J. Sadlej, J. Mol. Struct., 2006, 790, 18-26.         [ Links ]

55. R. Parthasarathi, V. Subramanian and N. Sathyamurthy, J. Phys. Chem., 2006, 110, 3349-3351.         [ Links ]

 

 

Received 20 July 2010
Revised 5 Februaury 2011
Accepted 16 February 2011

 

 

* To whom correspondence should be addressed. E-mail: guido.maes@chem.kuleuven.be / okumakasende@yahoo.com

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons