SciELO - Scientific Electronic Library Online

vol.61Methyl iodide oxidative addition to rhodium(I) complexes: A DFT and NMR study of [Rh(FcCOCHCOCf3)(CO)(pph3)] and the rhodium(III) reaction productsNBS as a powerful catalyst for the synthesis of β-hydroxysulphides with thiolysis of epoxides under mild reaction conditions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

S.Afr.j.chem. (Online) vol.61  Durban  2008




Performance and structure of LiNi0.5Mn1.5O4 prepared from various Ni precursors for lithium ion batteries



Zhaoyong ChenI; Shan JiII, *; Huali ZhuI; Sivakumar PasupathiII; Ben BladergroenII; Vladimir LinkovII

IDepartment of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410076, People's Republic of China
IISouth African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville, 7535 South Africa




LiNi0,5Mn1,5O4 compounds were prepared through a solid-state reaction using various Ni precursors. The effect of the precursors on the electrochemical performance of LiNi0,5Mn1,5O4 was investigated. LiNi0,5Mn1,5O4 made from Ni(NO3)2 6H2O shows the best charge-discharge performance. The reversible capacity of LiNi0,5Mn1,5O4 is about 145 mA h g-1 and remained at 143 mA h g-1 after 10 cycles at 3.0 to 5.0 V. The XRD results showed that the precursors and dispersion method had significant effects on their structures. Pure spinel phase can be obtained with a high energy ball-milling method and Ni(NO3)26H2O as precursor. A trace amount of the NiO phase was detected in LiNi0,5Mn1,5O4 with the manual grinding method when Ni(CH3COO)26H2O, NiO and Ni2O3 were used as precursors.

Keywords: LiNi0,5Mn1,5O4, spinel, cathode materials, lithium ion battery



Full text available only in pdf format.



Financial assistance from the Department of Science and Technology, South Africa, is gratefully acknowledged.



1 R. Alcantara, M. Jaraba, P. Lavela, J.M. Lloris, P. Vicente and J.L. Tirado, J. Electrochem. Soc., 2004, 151, 53-58.         [ Links ]

2 A. Caballero, L. Hernan, M. Melero, J. Morales and M. Angulo, J. Electrochem. Soc., 2005, 152, 6-12.         [ Links ]

3 H. Sang and K. Yang, Electrochim. Acta, 2004, 50, 431-434.         [ Links ]

4 Y. Xia, H. Zhou and M. Yoshio, J. Electrochem. Soc., 1997, 144, 2593-2600.         [ Links ]

5 H. Dong and M. Seung, J. Electrochem. Soc., 1997, 144, 3342-3347.         [ Links ]

6 A. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gérand and J.M. Tarascon, J. Electrochem. Soc., 1999, 146, 428-436.         [ Links ]

7 A. Eftekhari, J. Power Sources, 2003, 124, 182-190.         [ Links ]

8 J. Kim, S. Myung and Y. Sun, Electrochim. Acta, 2004, 49, 219-227.         [ Links ]

9 B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H. Kim and S. Choi, Electrochem. Comm., 2004, 6, 821-826.         [ Links ]

10 Y. Sun, Z. Wang, X. Huang and L. Chen, J. Power Sources, 2004, 132, 161-165.         [ Links ]

11 S. Mukerjee, X.Q. Yang, X. Sun, S.J. Lee, J. McBreen and Y. Ein-Eli, Electrochim. Acta, 2004, 49, 3373-3382.         [ Links ]

12 Y. Idemoto, H. Narai and N. Koura, J. Power Sources, 2003, 119, 125-129.         [ Links ]

13 R. Alcantara, M. Jaraba, P. Lavela, J.M. Lloris, V.C. Pérez and J.L. Tirado, J. Electrochem. Soc., 2005, 152, 13-18.         [ Links ]

14 V.C. Pérez, J. Lloris and J. Tirado, Electrochim. Acta, 2004, 49, 1963-1967.         [ Links ]



Received 21 August 2007
Revised 6 May 2008
Accepted 12 November 2008



* To whom correspondence should be addressed. E-mail:

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License