SciELO - Scientific Electronic Library Online

 
vol.103 issue5-6 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Science

On-line version ISSN 1996-7489
Print version ISSN 0038-2353

S. Afr. j. sci. vol.103 n.5-6 Pretoria May./Jun. 2007

 

RESEARCH ARTICLES

 

Targeting of glycosylated lipoplexes in HepG2 cells: Anomeric and C-4 epimeric preference of the asialoglycoprotein receptor

 

 

Moganavelli SinghI; Colin B. RogersII; Mario AriattiI

IDepartment of Biochemistry, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
IIDepartment of Chemistry, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

 

 


ABSTRACT

This study was conducted to determine the capacity of the asialoglycoprotein receptor on the hepatocyte-derived cell line HepG2 to exhibit an anomeric preference with respect to the D-galacto moiety on cationic liposome membrane-anchored cholesteryl-α-D-galactopyranoside (Choagal) and cholesteryl-ß-D-galactopyranoside (Cholßgal) in cationic liposome/pGL3 plasmid DNA complexes constructed for non-viral, hepatocyte-directed gene transfer. In addition, cholesteryl-α-D-glucopyranoside (Choaglu) and cholesteryl-ß-D-glucopyranoside (Cholßglu) were separately formulated into cationic liposomes at the same mole ratio (11%) to examine the C-4 epimeric selectivity of the asialo-glycoprotein lectin for the glucopyranosides displayed in derived lipoplexes. Lipoplex formation was examined by gel retardation, ethidium displacement assays, and transmission electron microscopy. Plasmid DNA was shown to be fully liposome associated and maximally compacted at a liposome:DNA ratio of 6:1 (weight ratio), corresponding to a +/- charge ratio of 1.3 with complexes falling in the 80-200 nm size range, whereas at a 5:1 w/wratio [1.1 (+/-) charge ratio] lipoplexes were somewhat smaller (50-100 nm) but promoted higher transgene activity in HepG2 cells than 6:1 (w/w) lipoplexes, in the following order: Cholßgal>Cholαgal > Cholßglu = Cholαglu. Transgene activity levels in HeLa cells which lack the asialoglycoprotein receptor were approximately 10% of those achieved in HepG2 cells. Moreover, transgene activity in HepG2 cells was reduced by approximately 90% in the presence of excess asialofetuin, a ligand for the asialoglycoprotein lectin.


 

 

“Full text available only in PDF format”

 

 

References

1. Saxena A., YikJ.H. and Weigel P.H. (2002). H2, the minor subunit of the human asialoglycoproteinreceptor trafficks intracellularly and forms homo-oligomers, but does not bind asialo-orosomucoid. J. Biol. Chem. 277, 35297-35304.         [ Links ]

2. Schwartz A.L., Fridovich S.E., Knowles B.B. and Lodish H.F. (1981). Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J. Biol. Chem. 256, 8878-8881.         [ Links ]

3. Knowles B.B., Howe C.C. and Aden D.P. (1980). Human hepatocellular carcinoma cell lines secrete the major plasma proteins on hepatitis B surface antigen. Science 209, 497-499.         [ Links ]

4. Wu G.Y. and Wu C.H. (1987). Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429-4432.         [ Links ]

5. Wu G.Y. and Wu C.H. (1988). Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 263, 14621-14624.         [ Links ]

6. Mack K.D., Walzen R. and Zeldis J.B. (1994). Cationic lipid enhances in vitro receptor-mediated transfection. Am. J. Med. Sci. 307, 138-143.         [ Links ]

7. Cho C-W., Cho Y-S., Lee H-K., Yeom Y.I., Park S-N. and Yoon D-Y. (2000). Improvement of receptor-mediated gene delivery to HepG2 cells using an amphiphilic gelling agent. Biotechnol. Appl. Biochem. 32, 21-26.         [ Links ]

8. Singh M., Kisoon N. and Ariatti M. (2001). Receptor-mediated gene delivery to HepG2 cells by ternary assemblies containing cationic liposomes and cationized asialoorosomucoid. Drug Deliv. 8, 29-35.         [ Links ]

9. Singh M. and Ariatti M. (2003). Targeted gene delivery into HepG2 cells using complexes containing DNA, cationized asialoorosomucoid and activated cationic liposomes. J. Control. Release 92, 383-394.         [ Links ]

10. Han J., Lim M. and Yeom Y.I. (1999). Receptor-mediated gene transfer to cells of hepatic origin by galactosylated albumin-polylysine complexes. Biol. Pharm. Bull. 22, 836-840.         [ Links ]

11. Chen J., Stickles R.J. and Daichendt K.A. (1994). Galactosylated histone-mediated gene transfer and expression. Hum. Gene Ther. 5, 429-435.         [ Links ]

12. Niidome T., Urakawa M., Sato H., Takahara Y., Anai T., Hatakayama T., Wada A., Hirayama T. and Aoyagi H. (2000). Gene transfer into hepatoma cells mediated by galactose-modified a-helical peptides. Biomaterials 21, 1811-1819.         [ Links ]

13. Han J. and Yeom Y.I. (2000). Specific gene transfer mediated by galactosylated poly-L-lysine into hepatoma cells. Int. J. Pharm. 202, 151-160.         [ Links ]

14. Hashida M., Takemura S., Nishikawa M. and Takakura Y. (1998). Targeted delivery of plasmid DNA complexed with galactosylated poly (L-lysine). J. Control. Release 53, 301-310.         [ Links ]

15. Plank C., Zoutlakal K., Cotton M., Mechtler K. and Wagner E. (1992). Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjugate Chem. 3, 533-539.         [ Links ]

16. Hisayasu S., Miyanchi M., Akiyama K., Gotoh T., Satoh S. and Shimada T (1999). In vivo gene transfer into liver cells mediated by a novel galactosyl-D-lysine/ D-serine copolymer. Gene Therapy 6, 689-693.         [ Links ]

17. Bettinger T., Remy J-S. and Erbacher P. (1999). Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjugate Chem. 10, 558-561.         [ Links ]

18. Ren T., Zhang G. and Liu D. (2001). Synthesis of galactosyl compounds for targeted gene delivery. Bioorgan. Med. Chem. 9, 2969-2978.         [ Links ]

19. Remy S-J., Kichler A., Mordvinov V, Schuber F. and Behr, J-P (1995). Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage towards artificial viruses. Proc. Natl Acad. Sci. USA 92, 1744-1748.         [ Links ]

20. Gao S., Chen J., Xu X., Ding Z., Yang Y-H., Hua Z. and Zhang, J. (2003). Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm. 255, 57-68.         [ Links ]

21. Biessen E.A.L., Veitsch H. and van Berkel T.J.C. (1994). Cholesterol derivative of a new triantennary cluster galactoside directs low- and high density lipo-proteins to parenchymal cells. Biochem. J. 302, 283-289.         [ Links ]

22. Kawakami S., Yamashita F., Nishikawa M., Takakura Y. and Hashida M. (1998). Asialoglycoprotein receptor-mediated gene transfer using novel galactosylated cationic liposomes. Biochem. Biophys. Res. Commun. 252, 78-83.         [ Links ]

23. Sun X., Hai L., Wu Y., Hu H.Y. and Z.R. Zhang. (2005). Targeted gene delivery to hepatoma cells using galactosylated liposome-polycation-DNA complexes (LPD). J. Drug Target. 13, 121-128.         [ Links ]

24. Wu J., Nantz M.H. and Zern M.A. (2002). Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front. Biosci. 7, 717-725.         [ Links ]

25. Singh M. and Ariatti M. (2006). A cationic cytofectin with long spacer mediates favourable transfection in transformed human epithelial cells. Int. J. Pharm. 309, 189-198.         [ Links ]

26. Rogers C.B. and ThevanI. (1986).Identification of mollic acid α-L-arabinoside, a 1-α-hydroxycycloartenoid from Combretum molle leaves. Phytochemistry 25, 1759-1761.         [ Links ]

27. Seo S., Tomita Y., Tori K. and Yoshimura Y. (1978). Determination of the absolute configuration of a secondary hydroxyl group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 100, 3331-3339.         [ Links ]

28. Le Pecq J-B. and Paoletti C. (1967). A fluorescent complex between ethidium bromide and nucleic acids. J. Mol. Biol. 27, 87-106.         [ Links ]

29. Gaell A.J. and Blagbrough I.S. (2000). Rapid and sensitive ethidium bromide fluorescence quenching assay of polyamine conjugate-DNA interactions for the analysis of lipoplex formation in gene therapy. J. Pharm. Biomed. Anal. 22, 849-859.         [ Links ]

30. Tros de Ilarduya C., Arangoa M.A., Moreno-Aliaga M.J. and Düzgünes, N. (2002). Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes. Biochim. Biophys. Acta 1561, 209-221.         [ Links ]

31. Schellekens H. and Stitz, L.W. (1980). Simple method for measuring growth inhibition by interferon of cells in monolayer. J. Virol. Meth. 1, 197-200.         [ Links ]

32. Wimmer Z., Pechová L. and Saman, D. (2004). Koenigs-Knorr synthesis of cycloalkyl glycosides. Molecules 9, 902-912.         [ Links ]

33. Agrawal, P.K. (1992). NMR spectroscopy in the structural elucidation of oligo-saccharides and glycosides. Phytochemistry 31, 3307-3330.         [ Links ]

34. Ren T., Zhang G. and D. Liu. (2001). Synthesis of galactosyl compounds for targeted gene delivery. Bioorgan. Med. Chem. 9, 2969-2978.         [ Links ]

35. Davis B.G. and Robinson M.A. (2002). Drug delivery systems based on sugar-macromolecule conjugates. Curr. Opin. Drug Discov. Devel. 5, 279-288.         [ Links ]

36. Managit C., Kawakami S., Yamashita F. and Hashida M. (2005). Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J. Pharm. Sci. 94, 2266-2275.         [ Links ]

37. Hattori Y., Suzuk, S., Kawakami S., Yamashita F. and Hashida M. (2005). The role of phosphatidylethanolamine (DOPE) in targeted gene delivery with manno-sylated cationic liposomes via intravenous route. J. Control. Release 108, 484-495.         [ Links ]

38. Felgner J.H. Kumar R., Sridhar C.N., Wheeler C.J., Tsai Y.J., Border R., Ramsey P., Martin M. and. Felgner P.L. (1994). Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550-2561.         [ Links ]

39. Percot A., Briane D., Coudet R., ReynierP., Bouchemal N., Lievre N., Hantz E., Salzmann J.L. and Cao A. (2004). A hydroxyethylated cholesterol-based cationic lipid for DNA delivery: effect of conditioning. Int. J. Pharm. 278, 143-163.         [ Links ]

40. Schätzlein A.G. (2003). Targeting of synthetic gene delivery systems. J. Biomed. Biotechnol. 2, 149-158.         [ Links ]

41. Wattiaux R., Laurent N., Wattiaux-DeConinck S. and Jadot M. (2000). Endo-somes, lysosomes: their implication in gene transfer. Adv. Drug Deliv. Rev. 41, 201-208.         [ Links ]

42. Pun S.H. and Davis M.E. (2002). Development of nonviral gene delivery vehicle for systemic application, Bioconjugate Chem. 13, 630-639.         [ Links ]

43. Zanta M.A., Boussif O., Adib A. and Behr J.P. (1997). In vitro gene delivery to hepatocytes with galactosylated polyethyleneimine. Bioconj. Chem. 8, 839-844.         [ Links ]

44. Higuchi Y., Kawakami S., Fumoto S.,Yamashita F. and Hashida M. (2006). Effect of the particle size of galactosylated lipoplex on hepatocyte-selective gene transfection after intraportal administration. Biol. Pharm. Bull. 29, 1521-1523.         [ Links ]

45. Fumoto S., Nakadori F., Kawakami S., Nishikawa M., Yamashita F. and Hashida. M. (2003). Analysis of hepatic disposition of galactosylated cationic liposome/ plasmid DNA complexes in perfused rat liver. Pharmaceut. Res. 20, 1452-1459.         [ Links ]

 

 

Received 23 March 2007.
Accepted 22 June 2007.

 

 

*Author for correspondence. E-mail: ariattim@ukzn.ac.za

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License