SciELO - Scientific Electronic Library Online

vol.110 número12Implementation of the first commercial scale DC smelter for ferronickel production from low grade laterite ores-technology building blocks and lessons learnedTheoretical and practical aspects of Cr(VI) in the South African ferrochrome industry índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X

J. S. Afr. Inst. Min. Metall. vol.110 no.12 Johannesburg Dez. 2010




Mathematical and computational modelling of the dynamic behaviour of direct current plasma arcs



Q.G. ReynoldsI; R.T. JonesI; B.D. ReddyII

IMintek, Randburg, South Africa
IICERECAM, University of Cape Town, Rondebosch, South Africa




The problem of direct-current plasma arc behaviour, interaction, and dynamics is considered in the context of metallurgical DC arc furnace applications. Particular attention is paid to the transient flow behaviour of arc systems. A mathematical formulation of the physics used to describe the arc system is presented, and includes the spatial and temporal evolution of fluid flow, heat transfer, and electromagnetism. Based on this formulation, a numerical model is developed using a finite difference approach on a regular cartesian grid in both two and three dimensions, with a special focus on robust stability, high resolution modelling, and high performance. A collection of results produced using the numerical model to study pilot plant-scale furnaces is then presented. These address a range of process and design variables and their effect on the numerical model's results. Where possible, the qualitative behaviour of the model is compared to available experimental data. A number of novel effects and phenomena are seen in the dynamic behaviour of the DC plasma arc model for both single and multiple arc systems, which may lead to improved understanding, control, and manipulation of such systems where they occur in industrial applications.

Keywords: Pyrometallurgy, direct-current furnace, plasma arc, modelling



“Full text available only in PDF format”




1. BARCZA, N.A., CURR, T.R., WINSHIP, W.A., and HEANLEY, C.P. The production of ferrochromium in a transferred-arc plasma furnace, 39th Electric Furnace Conference proceedings, 1982, pp. 243-260.         [ Links ]

2. SCHOUKENS, A.F.S., DENTON, G.M., and JONES, R.T. Pilot plant production of prime western grade zinc from lead blast furnace slags using the Enviroplas process, Proceedings of the Third International Symposium on Recycling of Metal and Engineered Materials, 1995, pp. 857-868.         [ Links ]

3. KOTZE, I.J. Pilot plant production of ferronickel from nickel oxide ores and dusts in a DC arc furnace, Minerals Engineering, vol. 15, no. 12, Supplement 1, November 2002, pp. 1017-1022.         [ Links ]

4. JONES, R.T. and KOTZE I.J., DC arc smelting of difficult PGM-containing feed materials, Proceedings of the SAIMM International Platinum Conference, 2004, pp 33-36.         [ Links ]

5. SCHOUKENS, A.F.S., ABDEL-LATIF, M., and FREEMAN, M.J., Technological breakthrough of the Mintek Thermal Magnesium Process, Journal of the South African Institute of Mining and Metallurgy, vol. 106, no. 1, 2006, pp. 25-29.         [ Links ]

6. MAECKER, H. Plasmaströmungen in Lichtbögen infolge Eigenmagnetische Kompression, Zeitschrift für Physik, vol. 141, 1955, pp. 198-216.         [ Links ]

7. BOULOS, M.I., FAUCHAIS, P., and PFENDER, E. Thermal plasmas: fundamentals and applications, vol. 1, Plenum Press, 1994.         [ Links ]

8. HAUS, H.A. AND MELCHER, J.R., Electromagnetic fields and energy, Prentice-Hall, 1989.         [ Links ]

9. E, W. and LIU, J.G. Gauge method for incompressible flows, Communications in Mathematical Sciences, vol. 1, no. 2, 2003, pp. 317-332.         [ Links ]

10. E, W. and LIU, J.G. Vorticity boundary condition and related issues for finite difference schemes, Journal of Computational Physics, vol. 124, 1996, pp. 368-382.         [ Links ]

11.        [ Links ]

12. BRANDT, A. Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, vol. 31, no. 138, 1977, pp. 333-390.         [ Links ]

13. BOWMAN, B. Properties of arcs in DC furnaces, 52nd Electric Furnace Conference proceedings, 1995, pp. 111-120.         [ Links ]

14. NAGHIZADEH-KASHANI, Y., CRESSAULT, Y., and GLEIZES, A. Net emission coefficient of air thermal plasmas, Journal of Physics D: Applied Physics, vol. 35, 2002, pp. 2925-2934.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons