SciELO - Scientific Electronic Library Online

vol.109 issue12Comparison between bond crushing energy and fracture energy of rocks in a jaw crusher using numerical simulationAn expert system for hydraulic excavator and truck selection in surface mining author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 0038-223X

J. S. Afr. Inst. Min. Metall. vol.109 n.12 Johannesburg Dec. 2009




Age hardening of the aluminium alloy EN 4017



D.B. Swanepoel; W.E. Stumpf

Department of Materials Science and Metallurgical Engineering, University of Pretoria, South A




Hulamin Rolled Products (Ltd) developed a high Mn and Si containing alloy, EN 4017 as a scrap consuming alloy from the waste generated in producing their range of clad products for brazing of inter alia automotive heat exchangers. The multifaceted composition of this alloy (Al -1.2 wt% Si -1.1 wt% Mn -0.2 wt% Mg -0.26 wt% Cu) suggested that it might display some degree of strengthening via precipitate formation of the Mg2Si-types. The aging isotherms constructed showed that EN 4017 with 0.19% Mg reached a lower peak strength (YS~210 MPa and UTS~260 MPa) compared to the EN 4017 material with 0.43% Mg (YS~270 MPa and UTS~325 MPa). The higher Mg variant of EN 4017 was comparable with the age-hardenable reference alloy EN 6061. Selected area electron diffraction (SAED) studies proved that the microstructure of age hardened EN 4017 contained a combination of β', β" and U2 phase after being aged at 175ºC for 65 h. The general microstructure contained precipitate free zones as well as grain boundary Si films, although these did not lead to significant embrittlement. The role of Mn dispersoids in the fracture mechanism of 4017 is also discussed. The article will compare the behaviour of EN 4017 with that EN 6061.

Keywords: Age-hardening, dispersoids, magnesium silicide, precipitate free zones



“Full text available only in PDF format”




1. GUPTA, A.K., LLOYD, D.J., and COURT, S.A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Materials Science and Engineering, 2001, vol. A316. pp. 11-17.         [ Links ]

2. MARIOARA, C.D., ANDERSEN, S.J., ZANDBERGEN, H.W., and HOLMESTAD, R. The influence of alloy composition on precipitates of the Al-Mg-Si system. Metallurgical and Materials Transactions, 2005, vol. 36A. pp. 691-702.         [ Links ]

3. MURAYAMA, M. and HONO, K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Materiala, 1999, vol. 47, no. 5. pp. 1537-1548.         [ Links ]

4. DUTTA, I. and ALLEN, S.M. A calorimetric study of precipitation in commercial aluminium alloy 6061. Journal of Materials Science Letters, 1991, vol. 10. pp. 323.         [ Links ]

5. DORWARD, R.C. and BOUVIER, C. A rationalization of factors affecting strength, ductility and toughness of AA6016-type Al-Mg-Si-(Cu) alloys. Materials Science and Engineering, 1998, vol. A258. pp. 33-44.         [ Links ]

6. ZANDBERGEN, H.W., ANDERSEN, S.J., AND JANSEN, J. Structure determination of Mg5Si6 Particles by dynamic electron diffraction studies. Science, 1997, vol. 277. pp. 1221-1225.         [ Links ]

7. MUNDOLFO, L.F. Aluminium Alloys-Structure and Properties, Butterworths, London. 1976. p. 566-572.         [ Links ]

8. DING, S. and MORRIS, J.G. Processing of AA3004 alloy can stock for optimum strength and formability. Metallurgical and Materials Transactions, 1997, vol. 28A. pp. 2715-2721.         [ Links ]

9. ZHU, Z. and STARINK, M.J. Solution strengthening and age hardening capability of Al-Mg-Mn alloys with small additions of Cu. Materials Science and Engineering, 2008, vol. A 488. pp. 125-133.         [ Links ]

10. LEE, D.H., PARK, J.H., and NAM, S.W. Enhancement of Mechanical properties of Al-Mg-Si alloys by means of Manganese dispersoids. Materials Science and Technology, 1999, vol. 15. pp. 450-455.         [ Links ]

11. KUIJPERS, N.C.W., VERMOELEN, F.J., VUIK, C., KOENIS, P.T.G., NILSEN, K.E., and VAN DER ZWAAG, S. The dependence of the â-AlFeSi to á-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements. Materials Science and Engineering, 2005, vol. A394, no. 1-2. pp. 9-19.         [ Links ]

12. DOWLING, J.M. and MARTIN, J.W. Influence of Mn addition on the deformation and fracture behaviour of an Al-Mg-Si alloy. Inst Met, 1973, vol. 1, no. 3. pp. 170-174.         [ Links ]

13. DOWLING, J.M. and MARTIN, J.W. Influence of Manganese additions on the deformation behaviour of an Al-Mg-Si alloy. Acta Metall, 1976, vol. 24, no. 12. pp. 1147-1153.         [ Links ]

14. MATSUDA, K., RYO, F., KAWABATA, T., HIROYUKI, T., UETANI, Y., and IKENO, S. Effect of additional elements on age-hardenability of Al-Mg-Si alloys. Journal of Light Metal Welding and Construction, 2002, vol. 40, no. 1. pp. 19-30.         [ Links ]

15. ZHEN, L. and KANG, S.B. Deformation and Fracture behaviour of two Al-Mg-Si alloys. Metallurgical and Materials Transactions, 1997, vol. 28A. pp. 1489-1497.         [ Links ]

16. ESMAEILI, S., WANG, X., LLOYD, D.J., and POOLE, W.J. On the precipitationhardening behaviour of the Al-Mg-Si-Cu alloy AA6111. Metallurgical and Materials Transactions, 2003, vol. 34A. pp. 751-763.         [ Links ]

17. YASSAR, R.S., FIELD, D.P., and WEILAND, H. The role of predeformation on the â" and â' precipitates and the Q' phase in an Al-Mg-Si alloy, AA6022. Scripta Materialia, 2005, vol. 53. pp. 299-303.         [ Links ]

18. Miao, W.F., Laughlin, D.E., Precipitation hardening in aluminium alloy 6022. Scripta Materialia, 1999, vol. 40, no. 7. pp. 873-878.         [ Links ]

19. DIETER, G.E. Mechanical Metallurgy, SI metric edition, McGraw-Hill, 1988, pp. 290-294.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License