SciELO - Scientific Electronic Library Online

vol.109 número10The effectiveness of current control of submerged arc furnace electrode penetration in selected scenariosBusiness improvement in the mining and metals industry índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 0038-223X

J. S. Afr. Inst. Min. Metall. vol.109 no.10 Johannesburg Out. 2009




Impact of silica on hydrometallurgical and mechanical properties of RIP grade resins for uranium recovery



V. YahoravaI; J. ScheepersI; M.H. KotzeI; D. AuerswaldII

IMintek, South Africa
IIBateman Engineering, South Africa




Resin-in-pulp (RIP) technology has recently often been considered for the direct recovery of base metals and uranium from dense pulps. Implementation of RIP will eliminate the requirement for any solid-liquid separation downstream of leaching and has the potential to combine the recovery and purification steps, hence reducing both capital and operating costs. The recovery of the valuable metal is expected to be higher when RIP is used, especially where the leached solids are difficult to settle or filter, and to wash.
The main concerns about the use of RIP for uranium recovery from dense pulps are the impact of silica on the resin's metallurgical performance and the operating costs that would be associated with resin loss. Although a number of resin manufacturers have been developing much improved RIP-grade resins, it is critical that the most cost-effective resin be selected. Mintek currently is doing a significant amount of work on silica fouling of RIP-grade strongbase resins in acidic leach liquors and the effect it has on the performance of the resin, including its durability.
This paper describes the results of the test work done on silica fouling and its impact on plant design input data. Resin durability test work was done using various laboratory techniques, but durability was also evaluated on a relatively large scale using actual pumps, screens, and mechanical agitation. Based on the results generated, a preliminary economical evaluation was done to estimate the impact of resin loss on the overall economic viability of a specific application.

Keywords: resin-in-pulp, silica fouling, resin loss, equilibrium, kinetics, elution, durability, mechanical strength, resistance to attrition



“Full text available only in PDF format”




1. LUNT, D., BOSHOFF, P., BOYLETT, M., and EL-ANSARY, Z. Uranium extraction: the key process drivers. The Journal of The Southern African Institute of Mining and Metallurgy, vol. 107, 2007. pp. 419-426.         [ Links ]

2. TAYLOR, A. Review of CIX and RIP systems for uranium extraction, Uranium Conference, ALTA, 24-25 May 2008.         [ Links ]

3. THULARE, T., VOS, P., PHIRI, C., and VAN HEGE, B. Developments in resin-inpulp (RIP) for uranium recovery. ALTA Uranium Conference, 3 Technical Proceedings. 2008.         [ Links ]

4. VAN DEVENTER, J. and MIKHAYLENKO,M. Notes of practical application of ion exchange resins in uranium extractive metallurgy. Uranium Conference, ALTA, 28-30 May 2009.         [ Links ]

5. VAN HEGE, B., VAN TONDER, D., BELL, R., WYETHE, J., and KOTZE, M. Recovery of base metals using MetRIX, ALTA Nickel/Cobalt Proceedings, 2006.         [ Links ]

6. ZAGANIARIS, E.J. Effect of physical and chemical structure of ion exchange resin on silica fouling in acid leach liquors in uranium hydrometallurgy, Hydrometallurgy, vol. 81, Manchester, England, 30 June-3 July, 1981. 15 pp.         [ Links ]

7. CABLE, P. and ZAGANIARIS, E.J. Process for uranium recovery, European Patent Application 1 790 740 A1. 2007.

8. GREEN, B.R., KOTZE, M.H., and WYETHE, J.P. Developments in ion exchange: The Mintek perspective, JOM, vol. 54, no. 10, pp. 37-43.         [ Links ]

9. FLEMING, C.A. Recovery of Gold by Resin-in-Pulp at the Golden Jubilee Mine, Precious Metals '89, M.C. Jha and S.D. Hill (eds.), Warrendale, PA: TMS, 1989, p. 105.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons