SciELO - Scientific Electronic Library Online

vol.108 número8Merensky pillar strength formulae based on back-analysis of pillar failures at Impala Platinum índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 0038-223X

J. S. Afr. Inst. Min. Metall. vol.108 no.8 Johannesburg ago. 2008




A review of the physical properties of base metal mattes



A.W. Sundström; J.J. Eksteen; G.A. Georgalli

Department of Process Engineering, University of Stellenbosch, Matieland, South Africa




This paper reviews the development and suitability of various important thermophysical and electrical properties with respect to base metal mattes. Areas of focus include the critical validation of measurements of viscosity, density, surface and interfacial tension, electrical conductivity, and an overview of the various experimental methods used to determine these properties. Accurate physical property data of mattes are critical in process modelling and computational fluid dynamic modelling of smelting and converting operations employed in the extraction of copper, nickel, cobalt and platinum group metals.



“Full text available only in PDF format”




1. NIKIFOROV, L.V., NAGIEV, V.A., and GRABCHAK, V.P. Viscosity of sulphide melts. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 12, no. 7, 1976. pp. 1179-1182.         [ Links ]

2. GLAZOV, V.M., CHIZHEVSKAYA, S.M., and GLAGOLEVA, N.N. Liquid semiconductors (in Russian). Nauka, 1967.         [ Links ]

3. DOBROVINSKII, I.E., ESIN, O.A., BORMIN, L.N., and CHUCHMAREV, S.K. Variation of the volume and viscosity of sulphide melts with composition. Russian Journal of Inorganic Chemistry, vol. 14, no. 5, 1969. pp. 727-730.         [ Links ]

4. BARFIELD, R.N. and KITCHENER, J.A. The viscosity of liquid iron and ironcarbon alloys. Journal of the Iron and Steel Institute, vol. 180, 1955. pp. 324-329.         [ Links ]

5. KUCHARSKI, M., IP, S.W., and TOGURI, J.M. The surface tension and density of Cu2S, FeS, Ni3S2 and their mixtures. Canadian Metallurgical Quarterly, vol. 33, no. 3, 1994. pp. 197-203.         [ Links ]

6. KONGOLI, F., DESSUREAULT, Y., and PELTON, A.D. Thermodynamic modeling of liquid Fe-Ni-Cu-Co-S mattes. Metallurgical and Materials Transactions B, vol. 29, 1998. pp. B:591-601.         [ Links ]

7. WALDNER, P. and PELTON, A.D. Critical thermodynamic assessment and modelling of the Fe-Ni-S system. Metallurgical and Materials Transactions B, vol. 35B, 2004. pp. 897-907.         [ Links ]

8. KONGOLI, F. and PELTON, A.D. Model prediction of thermodynamic properties of Co-Fe-Ni-S mattes. Metallurgical and Materials Transactions B, vol. 30B, 1999. pp. 443-450.         [ Links ]

9. PELTON, A.D. and BLANDER, M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach-application to silicate slags. Metallurgical and Materials Transactions B, vol. 17B, 1986. pp. 805-815.         [ Links ]

10. ERIKSSON, G. and PELTON, A.D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the calcia-alumina, alumina-silica, and calcia-alumina-silica systems. Metallurgical and Materials Transactions B, vol. 24B, 1993. pp. 807-816.         [ Links ]

11. WU, P., ERIKSSON, G., and PELTON, A.D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the calcia-iron(II) oxide, calcia-magnesia, calcia-manganese(II) oxide, iron(II) oxidemagnesia, iron(II) oxide-manganese(II) oxide, and magnesiamanganese( II) oxide systems. Journal of the American Ceramic Society, vol. 76, 1993. pp. 2059-2064.         [ Links ]

12. KONDRATIEV, A., HAYES, P.C. and JAK, E. Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-FeO-MgO-SiO2 system.Part 1. Description of the model and its application to the MgO, MgO-SiO2, Al2O3-MgO and CaO-MgO sub-systems. ISIJ International, vol. 45, no. 3, 2006. pp. 359-367.         [ Links ]

13. FRIEDRICH, K. Investigation of layer-forming systems. Metall und Erz, 1914. pp. 160-167.         [ Links ]

14. LEVIN, E.M., ROBBINS, C.R., and MCMURDIE, H.F. Phase diagrams for ceramists. The American Ceramic Society, 1964.         [ Links ]

15. GLAZOV, V.M. and VERTMAN, A.A. The structure and properties of liquid metals (in Russian). Izd-vo AN SSSR, 1960.         [ Links ]

16. LARRAIN, J.M. and LEE, S.L. Thermodynamic properties of copper-nickelsulfur melts. Canadian Metallurgical Quarterly, vol. 19, 1980. pp. 183-190.         [ Links ]

17. LEE, S.L., LARRAIN, J.M., and KELLOGG, H.H. Thermodynamic properties of molten sulphides. Part III. The system Cu-Ni-S. Metallurgical Transactions B, vol. 11B, 1980. pp. 251-255.         [ Links ]

18. KOPYLOV, N.I. and NOVOSELOV, S.S. System Cu2S-FeS-Na2S. Zhurnal Neorganicheskoi Khimii, vol. 9, no. 8, 1964. pp. 1919-1929.         [ Links ]

19. KAIURA, G.H. and TOGURI, J.M. Densities of the molten ferrous sulfide, ferrous sulfide-cuprous sulfide and iron-sulfur-oxygen systems-utilizing a bottom-balance Archimedean technique. Canadian Metallurgical Quarterly, vol. 18, no. 2, 1979. pp. 155-164.         [ Links ]

20. NAGAMORI, M. Density of molten silver-sulfur, copper-sulfur, iron-sulfur, and nickel-sulfur systems. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 245, no. 9, 1969. pp. 1897-1902.         [ Links ]

21. FUJISAWA, T. UTIGARD, T., and TOGURI, J.M. Surface tension and density of the molten lead chloride-potassium chloride-sodium chloride ternary system. Canadian Journal of Chemistry, vol. 63, no. 5, 1985. pp. 1132-1138.         [ Links ]

22. LIU, G., TOGURI, J.M., and STUBINA, N.M. Surface tension and density of the molten LaCl3-NaCl binary system. Canadian Journal of Chemistry, vol. 65, no. 12, 1987. pp. 2779-82.         [ Links ]

23. BYERLEY, J.J. and TAKEBE, N. Densities of molten nickel mattes. Metallurgical Transactions, vol. 2, no. 4, 1971. pp. 1107-1111.         [ Links ]

24. AZUMA, K. and TAKEBE, N. Densities of molten copper matte. Nippon Kogyo Kaishi, vol. 88, 1972. pp. 557-562.         [ Links ]

25. TOKUMOTO, S., KASAMA, A., and FUJIOKA, Y. Measurements of density and surface tension of copper mattes. Technology Reports of the Osaka University, 22, 1972. pp. 1053-1089.         [ Links ]

26. HYRN, J.N., TOGURI, J.M., CHOO, R.T.C., and STUBINA, N.M. Densities of molten copper-nickel mattes between 1100 and 1300°C. Canadian Metallurgical Quarterly, vol. 35, no. 2, 1996. pp. 123-132.         [ Links ]

27. IP, S.W. and TOGURI, J.M. Surface and interfacial tension of the Ni-Fe-S, Ni-Cu-S, and fayalite slag systems. Metallurgical Transactions B, vol. 24, 1993. pp. 657-668.         [ Links ]

28. MATSUSHITA, T., HAYASHI, M., and SEETHARAMAN, S. Thermochemical and thermophysical property measurements in slag systems. International Journal of Materials and Product Technology, vol. 22, no. 4, 2005. pp. 351-390.         [ Links ]

29. MANDIRA, M., DHARWADKAR, H.N., and KUMAR, D. Surface tension of matte and its measurement by sessile drop technique. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, vol. 96, June 1987. pp. C93-C97.         [ Links ]

30. HALDEN, F.A., and KINGERY, W.D. Surface tension at elevated temperatures. II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3. Journal of Physical Chemistry, vol. 59, 1955. pp. 557-559.         [ Links ]

31. NAKASHIMA, K. and MORI, K. Interfacial properties of liquid iron alloys and liquid slags relating to iron- and steel-making processes. ISIJ International, vol. 32, 1992. pp. 11-18.         [ Links ]

32. GALEW.F. and TOTEMEIER, T.C. (eds). Smithells metals reference book. Elsevier Butterworth-Heinemann, Oxford, England, 8th edition, 2004.         [ Links ]

33. HENGZHONG, Z. Relationship between the surface tensions and the compositions of copper and nickel mattes. Paul E. Queneau International Symposium on Extractive Metallurgy of Copper Nickel and Cobalt, vol. 1, 1993. pp. 341-351.         [ Links ]

34. KRIVSKY, W.A. and SCHUHMANN, R. Thermodynamics of the Cu-Fe-S system at matte smelting temperatures. Transactions of the American Institute of Mining and Metallurgy, vol. 209, 1957. pp. 981-988.         [ Links ]

35. ELLIOTT, J.F. and MOUNIER, M. Surface and interfacial tensions in copper matte-slag systems, 1200°C. Canadian Metallurgical Quarterly, vol. 21, no. 4, 1982. pp. 415-428.         [ Links ]

36. VANYUKOV, A.V., BYSTROV, V.P., and YA, V. Zaitsev. Surface and interfacial tension of lead-bearing metallurgical melts. Eizicheskaya Khimiya Metallurgicheskih Protsessov I Sistem, 1966. pp. 396-406.         [ Links ]

37. YAN, L., CAO, Z., XIE, Y., and QIAO, Z. Surface tension calculation of the Ni3S2-FeS-Cu2S mattes. Calphad, vol. 24, no. 4, 2000. pp. 449-463.         [ Links ]

38. HILLERT, M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad, vol. 4, no. 1, 1980. pp. 1-12.         [ Links ]

39. CHOU, K.-C., LI, W.-C., LI, F., and HE, M. Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad, vol. 20, no. 4, 1996. pp. 395-406.         [ Links ]

40. GIRIFALCO, L.A. and GOOD, R.J. A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. Journal of Physical Chemistry, vol. 61, 1957, pp. 904-909.         [ Links ]

41. YA. ZAITSEV, V., VANYUKOV, A.V., and KOLOSOVA, V.S. Interaction of Ni3S2-FeS and Cu2S-FeS sulfide systems with iron-silicate melts. Izvestiya Akademii Nauk SSSR, Metally, vol. 5, 1968. pp. 39-45.         [ Links ]

42. Mungall, J.E. AND Su, S. Interfacial tension between magmatic sulfide and silicate liquids: Constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth and Planetary Science Letters, vol. 234, 2005. pp. 135-149.         [ Links ]

43. URQUHART, R.C., RENNIE, M.S., and RABEY, C.C. Extractive metallurgy of copper, pyrometallurgy and electrolytic refining, chapter 14: The smelting of copper-nickel concentrates in an electric furnace, Metallurgical Society of the AIME, 1976. pp. 274-295.         [ Links ]

44. HAYES, P. Process principles in minerals and materials production. Hayes Publishing Co., 3rd edition, 2003.         [ Links ]

45. ENDERBY, J.E. and BARNES, A.C. Liquid semiconductors. Reports on Progress in Physics, vol. 53, 1990. pp. 85-179.         [ Links ]

46. SAVELSBERG, W. Ueber die elektrolyse geschmolzener metallsulfide. Zeitschrift fuer Elekrochemie und Angewandte Physikalische Chemie, vol. 46, no. 7, 1940. pp. 379-397.         [ Links ]

47. KNACKE, O. and STRESE, G. Die elektrische leitfähigkeit von geschmolzenen sulfiden, schlacken und speisen. Zeitschrift fuer Erzbergbau und Metallhuettenwesen, vol. 10, no. 5, 1957, pp. 207-212.         [ Links ]

48. DELIMARSKII, Y.K. and BELIKANOV, A.A. The electrical conductivity of molten sulphides of tin, antimony, bismuth and nickel. Journal of Inorganic Chemistry, vol. 111, no. 5, 1958. pp. 1075-1078.         [ Links ]

49. POUND, G.M., DERGE, G., and OSUCH, G. Electrical conduction in molten Cu-Fe sulphide mattes. Journal of metals, vol. 7, no. 3, 1955. pp. 481-484.         [ Links ]

50. CHUN-PENG, L., MING-SHI, C., and AI-PING, H. Specific conductance of copper(I) sulfide, nickel(II) sulfide and commercial mattes. Youse Jinshu, vol. 32, no. 1, 1980. pp. 76-81.         [ Links ]

51. ARGYRIADES, D., DERGE, G., and POUND, G.M. Electrical conductivity of molten FeS. Transactions of the Metallurgical Society of AIME, vol. 215, no. 6, 1959. pp. 909-912.         [ Links ]

52. DANCY, E.A. and DERGE, G.J. Electrical conductivity of the molten Co-S, Ni-S, Cu-S, and Ag-S systems. Transactions of the Metallurgical Society of AIME, vol. 227, no. 5, 1963. pp. 1034-1038.         [ Links ]

53. ENDERBY, J.E. and BARNES, A.C. A theory for the electrical conductivity of molten mixtures of sulphides and halides. Journal of the Electrochemical Society, vol. 134, no. 10, 1987. pp. 2483-2485.         [ Links ]

54. BOURGON, M., DERGE, G., and POUND, G.M. Conductivity and sulfur activity in liquid copper sulfide. Journal of metals, vol. 9, no. 11, 1957. pp. 1454-1458.         [ Links ]

55. YANG, L., POUND, G.M., and DERGE, G. Mechanism of electrical conduction in molten Cu2S-CuCl and mattes. Transactions of the Metallurgical Society of AIME, vol. 206, no. 5, 1956, pp. 783-788.         [ Links ]

56. DOBROVINSKII, I.E., ESIN, O.A., and BARMIN, L.N. Electroresistance of melts containing iron, nickel, cobalt, and copper sulphides. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, vol. 13, no. 2, 1970. pp. 73.         [ Links ]

57. HUNDERMARK, R. The electrical conductivity of melter type slags. Master's thesis, University of Cape Town, 2003.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons