SciELO - Scientific Electronic Library Online

 
vol.108 issue5Local process investigations on composite electrodes: On the way to understanding design criteria for spray coated anodes in Zn electrowinningControl of the grain size distribution of the raw material mixture in the production of iron sinter author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 0038-223X

J. S. Afr. Inst. Min. Metall. vol.108 n.5 Johannesburg May. 2008

 

TRANSACTION PAPER

 

Geostatistical modelling of rock type domains with spatially varying proportions: Application to a porphyry copper deposit

 

 

X. EmeryI; J.M. OrtizI; A.M. CáceresII

IDepartment of Mining Engineering, University of Chile, Santiago, Chile
IIDepartment of Geology, University of Chile, Santiago, Chile

 

 


SYNOPSIS

Plurigaussian simulation allows constructing lithofacies or rock type models that reproduce the contacts between facies in accordance with the geologist's interpretation. Its implementation requires inferring the local facies proportions, but the uncertainty in the true proportions is not accounted for. The simpler model with constant facies proportions may not yield realistic results, due to the possibility of obtaining facies at locations where it is geologically unlikely to find them.
This article presents a variation of the plurigaussian model, in which the facies proportions are represented by random fields. The realizations can be made conditional to soft geological information to account for local changes in the facies proportions. The model is illustrated via a case study of a porphyry copper deposit where four Gaussian random fields are simulated conditionally to drill hole data and to constraints on the probability of finding a given facies at specific locations (control points) in the deposit. Then the first two fields are truncated using the random thresholds defined by the last two, generating a three-facies model. The proposed random proportion model proves to be simple to use and to account for spatial variations of the geological characteristics and for the uncertainty in the facies proportions.

Keywords: categorical variable; lithofacies; truncated plurigaussian simulation; regionalized proportions


 

 

“Full text available only in PDF format”

 

 

References

1. MATHERON, G. Random Sets and Integral Geometry. New York, Wiley, 1975. pp. 261.         [ Links ]

2. GEORGSEN, F. and OMRE, H. Combining fibre processes and Gaussian random functions for modelling fluvial reservoirs. Geostatistics Tróia'92. Soares A. (ed.). Dordrecht. Kluwer Academic, 1993. pp. 425-440.         [ Links ]

3. JEULIN, D. Dead leaves models: from space tessellation to random functions. Advances in Theory and Applications of Random Sets. Jeulin, D. (ed.). Singapore. World Scientific Publishing Company, 1997. pp. 137-156.         [ Links ]

4. LIA, O., TJELMELAND, H., and KJELLESVIK, L.E. Modeling of facies architecture by marked point models. Geostatistics Wollongong'96. Baafi, E.Y., and Schofield, N.A. (eds.). Dordrecht. Kluwer Academic, 1997. pp. 386-397.         [ Links ]

5. LANTUÉJOUL, C. Geostatistical Simulation: Models and Algorithms. Berlin, Springer, 2002. pp. 256.         [ Links ]

6. ALABERT, F. Stochastic Imaging of Spatial Distributions Using Hard and Soft Information. Department of Applied Earth Sciences, Stanford University, 1987. pp. 198.         [ Links ]

7. CARLE, S.F. and FOGG, G.E. Transition probability-based indicator geostatistics. Mathematical Geology, 1996. vol. 28, no. 4, pp. 453-476.         [ Links ]

8. MATHERON, G., BEUCHER, H., DE FOUQUET, C., GALLI, A., GUÉRILLOT, D., and RAVENNE, C. Conditional simulation of the geometry of fluvio-deltaic reservoirs. 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Dallas, Texas. SPE 16753, 1987. pp. 571-599.         [ Links ]

9. DE FOUQUET, C., BEUCHER, H., GALLI, A., and RAVENNE, C. Conditional simulation of random sets: Application to an argileous sandstone reservoir. Geostatistics. Armstrong, M. (ed.). Dordrecht. Kluwer Academic, 1989. pp. 517-530.         [ Links ]

10. GALLI, A., BEUCHER, H., LE LOC'H, G., DOLIGEZ, B., and HERESIM GROUP. The pros and cons of the truncated Gaussian method. Geostatistical Simulations. Armstrong, M., and Dowd, P.A. (eds.). Dordrecht. Kluwer Academic, 1994. pp. 217-233.         [ Links ]

11. LE LOC'H, G. and GALLI, A. Truncated plurigaussian method: Theoretical and practical points of view. Geostatistics Wollongong'96. Baafi, E.Y., and Schofield, N.A. (eds.). Dordrecht. Kluwer Academic, 1997. pp. 211-222.         [ Links ]

12. ARMSTRONG, M., GALLI, A., LE LOC'H, G., GEFFROY, F., and ESCHARD, R. Plurigaussian Simulations in Geosciences. Berlin, Springer, 2003. pp. 160.         [ Links ]

13. BETZHOLD, J. and ROTH, C. Characterizing the mineralogical variability of a Chilean copper deposit using plurigaussian simulations. Journal of the South African Institute of Mining and Metallurgy, 2000. vol. 100, no. 2, pp. 111-120.         [ Links ]

14. SKVORTSOVA, T., ARMSTRONG, M., BEUCHER, H., FORKES, J., THWAITES, A., and TURNER, R. Applying plurigaussian simulations to a granite-hosted orebody. Geostats 2000 Cape Town. Kleingeld, W.J., and Krige, D.G. (eds.). Johannesburg. Geostatistical Association of Southern Africa, 2001. pp. 904-911.         [ Links ]

15. SKVORTSOVA, T., BEUCHER, H., ARMSTRONG, M., FORKES, J., THWAITES, A., and TURNER, R. Simulating the geometry of a granite-hosted uranium orebody. Geostatistics Rio 2000. Armstrong, M., Bettini, C., Champigny, N., Galli, A., and Remacre, A. (eds.). Dordrecht. Kluwer Academic, 2002. pp. 85-99.         [ Links ]

16. EMERY, X. and GONZÁLEZ, K.E. Incorporating the uncertainty in geological boundaries into mineral resources evaluation. Journal of the Geological Society of India, 2007. vol. 69, no. 1, pp. 29-38.         [ Links ]

17. DEUTSCH, C.V. Geostatistical Reservoir Modeling. New York, Oxford University Press, 2002. pp. 376.         [ Links ]

18. MATHERON, G., BEUCHER, H., DE FOUQUET, C., GALLI, A., and RAVENNE, C. Simulation conditionnelle à trois faciès d'une falaise de la formation du Brent. Sciences de la Terre, Série Informatique Géologique, 1988. vol. 28, pp. 213-249.         [ Links ]

19. BEUCHER, H., GALLI, A., LE LOC'H, G., RAVENNE, C., and HERESIM GROUP. Including a regional trend in reservoir modelling using the truncated Gaussian method. Geostatistics Tróia'92. Soares, A. (ed.). Dordrecht. Kluwer Academic, 1993. pp. 555-566.         [ Links ]

20. BRAGA, M.S., SOUZA, O.L., and REMACRE, A. Facies proportion matrixes building for 3D geologic modelling of Recôncavo Basin deltaic reservoirs, Bahia State, Brazil. Geostats 2000 Cape Town. Kleingeld, W.J., and Krige, D.G. (eds.). Johannesburg. Geostatistical Association of Southern Africa, 2001. pp. 393-402.         [ Links ]

21. RAVENNE, C., GALLI, A., DOLIGEZ, B., BEUCHER, H., and ESCHARD, R. Quantification of facies relationships via proportion curves. Geostatistics Rio 2000. Armstrong, M., Bettini, C., Champigny, N., Galli, A., and Remacre, A. (eds.). Dordrecht. Kluwer Academic, 2002. pp. 19-40.         [ Links ]

22. CHILÈS, J.P. and DELFINER, P. Geostatistics: Modeling Spatial Uncertainty. New York, Wiley, 1999. pp. 695.         [ Links ]

23. HAAS, A. and FORMERY, P. Uncertainty in facies proportion estimation I. Theoretical framework: The Dirichlet distribution. Mathematical Geology, 2002. vol. 34, no. 6, pp. 679-702.         [ Links ]

24. BIVER, P., HAAS, A., and BACQUET, C. Uncertainty in facies proportion estimation II. Application to geostatistical simulation of facies and assessment of volumetric uncertainties. Mathematical Geology, 2002. vol. 34, no. 6, pp. 703-714.         [ Links ]

25. SERRANO, L., VARGAS, R., STAMBUK, V., AGUILAR, C., GALEB, M., HOLMGREN, C., CONTRERAS, A., GODOY, S., VELA, I., SKEWES, M. A., and STERN, C.R. The late Miocene to early Pliocene Río Blanco-Los Bronces copper deposit, Central Chilean Andes. Andean Copper Deposits: New Discoveries, Mineralizations, Styles and Metallogeny. Camus, F., Sillitoe, R. H., and Petersen, R. (eds.). Littleton, Colorado. Society of Economic Geologists, Special Publication no. 5, 1996. pp. 119-130.         [ Links ]

26. VARGAS, R., GUSTAFSON, L.B., VUKASOVIC, M., TIDY, E., and SKEWES, M.A. Ore breccias in the Rio Blanco-Los Bronces Porphyry copper deposit, Chile. Geology and Ore Deposits of the Central Andes. Skinner, B.J. (ed.). Littleton, Colorado. Society of Economic Geologists, Special Publication, no. 7, 1999. pp. 281-297.         [ Links ]

27. FREULON, X. and DE FOUQUET, C. Conditioning a Gaussian model with inequalities. Geostatistics Tróia'92. Soares A. (ed.). Dordrecht. Kluwer Academic, 1993. pp. 201-212.         [ Links ]

28. FREULON, X. Conditional simulation of a Gaussian random vector with nonlinear and/or noisy observations. Geostatistical Simulations. Armstrong, M., and Dowd, P.A. (eds.). Dordrecht. Kluwer Academic, 1994. pp. 57-71.         [ Links ]

29. EMERY, X. Simulation of geological domains using the plurigaussian model: New developments and computer programs. Computers and Geosciences, 2007. vol. 33, no. 9, pp. 1189-1201.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License