SciELO - Scientific Electronic Library Online

vol.79 número2Epidemiological aspects of bovine trypanosomosis in an endemic focus of eastern Zambia: The role of trypanosome strain variability in disease patternResource mapping and emergency preparedness to infectious diseases in human and animal populations in Kibaha and Ngorongoro districts, Tanzania índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Onderstepoort Journal of Veterinary Research

versão On-line ISSN 2219-0635
versão impressa ISSN 0030-2465

Onderstepoort j. vet. res. vol.79 no.2 Pretoria Jan. 2012




Human cystic echinococcosis in South Africa



Benjamin MogoyeI; Colin N. MenezesII; Martin P. GrobuschII, III, IV; Kerstin WahlersV; John FreanI

INational Institute for Communicable Diseases, National Health Laboratory Service, South Africa
IIDepartment of Internal Medicine, Chris Hani Baragwanath Hospital and University of the Witwatersrand, South Africa
IIIInstitute of Tropical Medicine, University of Tubingen, Germany
IVDepartment of Internal Medicine, University Amsterdam, The Netherlands
VComprehensive Infectious Diseases Center, University Hospitals, Germany

Correspondence to



Cystic echinococcosis (CE) is caused by the tapeworm, Echinococcus granulosus. The tapeworms resides in the small intestines of canids and the lifecycle involves both intermediate and definitive hosts. Humans are accidental intermediate hosts. Cystic echinococcosis is an economically important infection constituting a threat to public health, and is considered an emerging disease around the world. There are at least 10 Echinococcus strain types (G1 - G10), each exhibiting diversity of morphology, development and host range. The epidemiology of CE is poorly understood in South Africa. A retrospective data analysis of the National Health Laboratory Service (NHLS) laboratory information system on echinococcosis serology, microscopy and histopathology results in eight provinces (excluding KwaZula-Natal) showed an overall positivity rate in submitted diagnostic samples of 17.0% (1056/6211), with the Eastern Cape (30.4%), North West (19.0%) and Northern Cape (18.0%) provinces showing highest rates. The data showed considerable variability between provinces. The review also showed that most proven cases were negative on serology, implying that the actual number of patients could be underestimated. To our knowledge, no data exist about the prevalent strains of E. granulosus and this prospective study will attempt to fill that gap. The aim is to genotype strains causing the disease in South Africa. Two different polymerase chain reaction (PCR) methods will be used to respectively target the 12S rRNA and nad 1 genes. To date, three samples have been genotyped as G1, G5 and G6; suggesting diversity of strains prevalent in the country, but more data is needed for a clearer picture.



Correspondence to:
Martin Grobusch
Department of Internal Medicine
Chris Hani Baragwanath Hospital and the University of the Witwatersrand
Faculty of Health Sciences, 7
York Road, Johannesburg 2193, South Africa



Note: Proceedings of the Conference of the Southern African Centre for Infectious Disease Surveillance 'One Health' held at the National Institute for Communicable Diseases, Johannesburg, July 2011.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons