SciELO - Scientific Electronic Library Online

 
vol.37Fall Detection System using XGBoost and IoT índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


R&D Journal

versión On-line ISSN 2309-8988
versión impresa ISSN 0257-9669

Resumen

BRESLER, F. H.; MULLER, J. H.  y  VENTER, G.. Investigating an Inverse Finite Element Approach for Characterising Soft Materials. R&D j. (Matieland, Online) [online]. 2021, vol.37, pp.80-88. ISSN 2309-8988.  http://dx.doi.org/10.17159/2309-8988/2021/v37a9.

Soft materials, such as soft biological tissue and soft silicone rubber, are non-linear materials which require the classical uniaxial and biaxial tensile testing methods for characterisation. Unfortunately, in special cases, such as for soft biological tissue, the samples are smaller than 10 mm χ 10 mm in size and these classical tensile testing methods produce unwanted stress and strain gradients due to the fastening techniques associated with these methods. Micro-indentation is proposed as an alternative method for characterising soft materials. Using inverse Finite Element (FE) analysis and a known Mooney-Rivlin three parameter material model, six different micro-indentation tests were proposed. A theoretical approach was used to determine which indentation test best characterised a silicone sample, by using two FE models. The results showed that microindentation is capable of characterising a soft material in ideal conditions with a cylindrical indenter applied in a diagonal orientation over the sample, as the best indentation method. Finally, it was observed that the material model can either match the displacements with the smallest objective function or the stress vs. stretch curve can be matched to 99 % over the whole stretch range but not both simultaneously.

Palabras clave : Inverse Finite Elements analysis; Micro-indentation; Gradient optimisation; Mooney-Rivlin hyper-elastic material model.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons