SciELO - Scientific Electronic Library Online

vol.37Performance Optimisation of Coal-fired Boiler Control using Flownex® Simulation Environment and AIDrowsiness Detection using Android Application and Mobile Vision Face API author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


R&D Journal

On-line version ISSN 2309-8988
Print version ISSN 0257-9669


AGENBAG, N.  and  MCDULING, C.. Fatigue Life Testing of Locally Additive Manufactured AlSilOMg Test Specimens. R&D j. (Matieland, Online) [online]. 2021, vol.37, pp.19-25. ISSN 2309-8988.

In order for additive manufacturing to become a viable manufacturing methodfor aerospace engineering, it is required that exhaustive static and fatigue testing be performed. The testing is required in order to describe material properties in a statistical manner. Fatigue tests were performed on standard additive manufactured ASTM E466 test specimens in order to obtain the low (1000 cycles) to high cycle (1E6 cycles) behaviour of AlSi10Mg. The specimens were manufactured using non-heat treated, but stress relieved specimens. Specimens were printed in three build directions, namely the XY (parallel with build plate), 45 degree and vertical direction as measured with respect to the build baseplate. The three different directions were chosen to investigate the sensitivity of the material properties to the build direction. The specimens were stress relieved on the baseplate. Static testing was also performed on specimens according to ASTM E8/E8M. The specimens were produced to have a surface finish representative of standard deburring techniques used in the aerospace industry. The surface roughness on the specimens were measured. The scatter in test data as a result of the surface finish on material properties is quantified. It is a requirement to quantify the effect of the surface roughness on fatigue failure allowable values since a machined type finish (less than 3.2 micrometer) is not always practically possible to achieve with additive manufactured structures. This is because the organic shapes produced with additive manufacturing makes some surfaces inaccessible to normal surface finishing techniques. Furthermore, some internal structures such as lattice structures are completely inaccessible to surface finishing techniques such as polishing or lapping. In addition to the surface roughness the roundness of the test section was also measured using inspection equipment. This was required since the industrial deburring techniques did not yield a completely concentric test section as a lathe operation would produce. Once again this is representative of an additive manufactured structure. The fatigue tests were performed at an R-ratio of 0.1. The test results were used to produce Wöhler or S-N curves for the material in all three material directions. The scatter was quantified using industry accepted methods. The results were compared with fatigue test results from literature of specimens produced with a lathe in order to compare a practical industrial surface finish on an additive manufactured component with a machined surface finish. It was found that the build support structures of the additive manufacturing process causes stress concentrations in the fatigue test specimens. This leads to a reduction in fatigue life and an increase in the scatter of the results.

Keywords : Additive manufacturing; fatigue testing; static testing; aluminium; AlSi10Mg.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License