SciELO - Scientific Electronic Library Online

 
vol.123 número5Purification of crude titanium powder produced by metallothermic reduction by acid leaching índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

BRUWER, F.J.N.  y  STACEY, T.R.. A proposed method for optimizing coal pillar design using coalfield-specific uniaxial compressive strength. J. S. Afr. Inst. Min. Metall. [online]. 2023, vol.123, n.5, pp.275-286. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2063/2023.

The research described considers whether the variability in coal material strength, as derived through a series of uniaxial compressive strength (UCS) tests, could be used to indicate the variability in coal pillar strength. The aim is to be able to use a distribution of UCS tests as input into the coal pillar strength calculation. This will allow the pillar design to be expressed in terms of a probability of failure rather than as the commonly used safety factor. To achieve this, the bulk strength factor associated with commonly used pillar strength formulae was replaced with a distribution of UCS results divided by an adjustment factor. The factor was determined so as to ensure that the resulting bulk strength does not deviate from the statistically determined bulk strength published in the original formulae. This approach enabled pillar strength distributions to be obtained using industry-accepted strength formulae, subsequently allowing for a probability of failure to be calculated for a specific pillar design. Using a regional coal material strength curve as a baseline, coalfields in which the coal is stronger than the regional mean can be identified and the pillar designs optimized. This is based on the stronger coals achieving lower probabilities of failure at similar safety factors. The research has considered actual UCS data from multiple mines in the Mpumalanga coalfields of South Africa, and has proved that the variability in material strength between coalfields could allow for some optimization using the proposed approach. Based on the data used in the study, a 2.78% increase in extraction could be achieved. However, further research will be required to validate the results of the study in an underground environment.

Palabras clave : coal; pillar design; probability of failure; uniaxial compressive strength.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons