SciELO - Scientific Electronic Library Online

 
vol.120 número9Consideration for declaring a Mineral Reserve for TSF mining projectsThe application of coal discards for acid mine drainage neutralization índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 2225-6253

Resumo

GROBBELAAR, M.; MOLEA, T.  e  DURRHEIM, R.. Measurement of air and ground vibrations produced by explosions situated on the Earth's surface. J. S. Afr. Inst. Min. Metall. [online]. 2020, vol.120, n.9, pp.521-530. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/978/2020.

Most equations used to predict the ground motion produced by explosions were developed using confined blasts that were detonated for breaking rock in mining or tunnelling. Ground motion is usually recorded by geophones or seismometers. The air blast produced by open-pit blasts and explosions on the surface can pose a significant risk, thus microphones and pressure gauges are often also used to monitor the effects of the explosion. The aim of this study is to determine whether the predictive equations developed for confined explosions can be used to predict the effects from explosions on the surface, with appropriate adjustments to the various coefficients. Three predictive equations developed for buried explosions were tested. The study shows that the US Bureau of Mines peak particle velocity (PPV) predictive equation is the most reliable. In addition, a predictive equation that uses the secondary atmospheric shock wave phenomenon also produced good results, and uses the scaled delay time parameter, which is easier to measure. These equations may be utilized for demolition sites, where old and potentially unstable explosives and obsolete equipment are destroyed on the surface, and for assisting in forensic seismology to determine the details of an unexpected and unknown explosion.

Palavras-chave : surface explosions; prediction; demolition; PPV; secondary shock wave.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons