SciELO - Scientific Electronic Library Online

 
vol.118 issue8Prediction of blast induced ground vibrations in Karoun III power plant and dam: A neural network author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

Abstract

DE GRAAF, W.W.  and  SPITERI, W.. A preliminary qualitative evaluation of a hydraulic splitting cylinder for breaking rock in deep-level mining. J. S. Afr. Inst. Min. Metall. [online]. 2018, vol.118, n.8, pp.891-897. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2018/v118n8a13.

Hydraulic rock-splitting cylinders have proved successful in numerous civil and construction applications. The purpose of this study was to conduct a preliminary qualitative evaluation of the applicability of the hydraulic splitting cylinder in deep-level mining with the aim of recommending equipment modifications and operational practices. The particular instrument used in the study was the DARDA® hydraulic splitter. Conventional drill-and-blast practice in deep-level mining often impacts adversely on the immediate environment. Alternatives are periodically sought for efficient, continuous, and safe rock-breaking in situations where conventional blasting is undesirable. A considerable amount of investigation work has been conducted by mining companies, equipment manufacturers, and research institutions on numerous methods of non-explosive mining, including the use of the hydraulic rock-splitter. Several trials were conducted underground. The most challenging aspect of in mechanical rock-splitting is to create a second free face in the stope, and the trials evaluated four different 'cut' layouts to achieve this objective. The trials highlighted the limits of the equipment in its current phase of development, as well as the importance of quality drilling in terms of collaring the hole, hole length, and directional accuracy. In the presence of a second free face the splitter becomes far more effective. The unit is simple in design and is easily integrated into existing mining operations. It also does not require a technically skilled workforce or expensive maintenance. Rock-breaking with the use of a rock splitter could have a place in niche applications in an underground mining operation, with some equipment modifications and further development of the process to establish a free-breaking face. General operational difficulties experienced underground during the trials are summarized and possible solutions recommended.

Keywords : rock-breaking; mechanical splitting; hydraulic splitter.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License