SciELO - Scientific Electronic Library Online

 
vol.118 issue8Techno-economic optimization of level and raise spacing in Bushveld Complex platinum reef conventional breast miningInvestigation into how the magnesia, silica, and alumina contents of iron ore sinter influence its mineralogy and properties author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

Abstract

MINNITT, R.C.A.. The costs of sampling errors and bias to the mining industry. J. S. Afr. Inst. Min. Metall. [online]. 2018, vol.118, n.8, pp.787-798. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2018/v118n8a1.

South Africa's mineral commodities generate approximately R420 billion per annum from export earnings. Of that amount coal (28.1%), gold (15.2%), iron ore (14.5%), and platinum (21.7%) account for 80%, and together with chrome and manganese account for 88% of the earnings. Payment for these products is based on the metal content, and in the case of coal, the energy content. Traders rely on the analytical results from samples of the products to obtain a fair price and true value of the sale. This paper covers three main issues. Firstly, the thrust of interest in sampling of particulate materials is shown to be primarily due to the financial implications of poor sampling and the vibrant trade in these mineral and metal products in the USA between the 1850s and 1940s. The importance of correct engineering for cutter operation and good maintenance of cutters in general in the sampling of bulk commodities is emphasised. Secondly, simulation of a low-grade iron ore deposit demonstrates that the principal offending factor in sampling events is the sampling bias, rather than the sampling error. Whereas sampling error may account for as little as 0.0016% error in the mean grade, sampling bias, which can be positive or negative, may affect the mean grade by as much as 10%. Thirdly, the contribution of individual particles of iron ore, particularly those in the larger fractions of the size distribution, is investigated. Relatively small changes in mean grade of about 0.106 %Fe can result in losses to the supplier of about US$11 600 per 100 000 t shipment of iron ore, a substantial amount of nearly seven million dollars per annum. Together the three aspects, principles of correct cutter operation, the effects of bias on the mean grade of samples, and the effect of size distribution on sample extraction error, contribute to potential financial losses in the bulk commodities trade.

Keywords : sampling; error; bias; uncertainty.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License