SciELO - Scientific Electronic Library Online

 
vol.115 número4Coal clearance system at Zondagsfontein Colliery índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

VENTER, P.  y  NAUDE, N.. Evaluation of some optimum moisture and binder conditions for coal fines briquetting. J. S. Afr. Inst. Min. Metall. [online]. 2015, vol.115, n.4, pp.329-333. ISSN 2411-9717.

Coal mining is a thriving industry and 53% of the coal mined in South Africa is used for electricity generation. Mechanization has made coal mining more efficient, but fines generation has subsequently increased. Up to 6% of the run of mine material can report to the -200 µm fraction. Common problems associated with fines handling include dust formation, storage problems, and high moisture levels. A method to turn this material into a saleable product instead of stockpiling it can add value to a company. Briquetting is a pressure agglomeration method where loose material is compacted into a dense mass (FEECO International, 2014). The briquettes must be able to withstand rigorous handling and transport operations without disintegrating. This study aims to investigate the optimum binder and moisture conditions required to produce a mechanically strong briquette using two different binders - a PVA powder (binder A) and a starch powder (binder B). It was found that for binder A the optimum moisture level was 12% to 14%. At this moisture level the greatest compression strength gains were observed, and low amounts of fines produced in impact and abrasion tests. The minimum amount of binder added while still obtaining a strong briquette was 0.5% binder A. For binder B the optimum moisture level was also 12% and the minimum amount of Binder B to be added was found to be 1%. Briquettes that were dried outside reached their peak strength after about four days, whereas the briquettes that dried inside took about 20 days to reach their strength plateau. Hardly any degradation took place on the surface of the binder A film after exposure of 300 hours of artificial weathering. Thermogravimetric analysis confirmed that neither binder A nor binder B will add to the ash content of the coal fines, as both binders totally decompose above 530°C. Binder B yielded stronger briquettes after 15 days and also generated less fines. It is therefore superior to binder A and would be recommended for further use.

Palabras clave : coal fines; briquetting; binder; moisture level.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons