SciELO - Scientific Electronic Library Online

vol.113 issue3What is the best energy-delivery system for hand-held stope drilling and associated equipment in narrow-reef hard rock mines?A practical approach to plant-scale flotation optimization author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253


SHAW, A et al. Challenges and solutions in PGM furnace operation: high matte temperature and copper cooler corrosion. J. S. Afr. Inst. Min. Metall. [online]. 2013, vol.113, n.3, pp.00-00. ISSN 2411-9717.

The key aspects of process metallurgy that distinguish platinum group metal (PGM) concentrate smelting from that of other base metal sulphide concentrates are presented. These differences include considerably higher input chrome and magnesia contents that directly raise the slag liquidus temperature and have the potential to increase accumulations of refractory spinels. Most importantly, the higher processing temperature required for PGM smelting and the resulting very high matte superheat lead to considerably more onerous smelting conditions than those typical of other smelting operations. This has presented challenges to furnace design and integrity, especially when coupled with the progressive intensification of smelting, involving doubling, and then redoubling, of furnace power inputs over the past 20 years. These power increases have been enabled by increasingly more advanced furnace cooling and structural technologies. Key technologies include strong constant-force spring-loaded bindings acting in three dimensions to minimize infiltration of superheated matte into brick joints, and robust well-cooled tapholes for reliably tapping the superheated matte. The result has been substantially improved productivity, and reduced smelting capital cost outlay per unit of production. A significant challenge, which was not anticipated, presented itself in the form of insidious corrosion of the furnace lining, and especially high-intensity copper cooling elements. Investigation of corrosion in related industries eventually identified 'chloride-accelerated sulphidation', and this term has been retained as it generically describes the most pertinent aspects of the accelerated low-temperature wear of copper coolers observed in PGM smelting. In addition to discussing the corrosion mechanism, this paper describes a number of solutions that were developed jointly by Anglo American Platinum and Hatch to address the copper corrosion problem. First, new monitoring technologies allowed furnaces to be operated more safely for a longer period of time. Second, a system for replacing corroded coolers from outside the furnace during a fast 'hot' shutdown minimized the impact on furnace operating factor and hearth life. Finally, a corrosion-resistant graphite-protected cooler design significantly improved furnace campaign life, and heralds a more lasting solution to cooler corrosion in PGM furnaces.

Keywords : PGM smelting; matte temperature; copper cooler; corrosion; chloride-accelerated sulphidation.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License