SciELO - Scientific Electronic Library Online

 
vol.113 número3The effect of grinding media performance on milling and operational behaviour índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

OBERTHUR, T; MELCHER, F; BUCHHOLZ, P  y  LOCMELIS, M. The oxidized ores of the Main Sulphide Zone, Great Dyke, Zimbabwe: turning resources into minable reserves - mineralogy is the key. J. S. Afr. Inst. Min. Metall. [online]. 2013, vol.113, n.3, pp.00-00. ISSN 2411-9717.

The Great Dyke of Zimbabwe constitutes the world's second largest reserve of platinum group elements (PGE) after the Bushveld Complex in neighbouring South Africa. Within the Great Dyke, economic concentrations of PGE are restricted to sulphide disseminations of the Main Sulphide Zone (MSZ), which are currently mined at the Ngezi, Unki, and Mimosa mines. Near-surface oxidized MSZ ores have a large potential. Their total resources are in the range of 160-250 Mt; however, all previous attempts to extract the PGE from this ore type have proved uneconomic due to low PGE recoveries (<< 50 per cent) achieved by conventional metallurgical methods. Within the ores of pristine, sulphide-bearing MSZ, the PGE are bimodally distributed. Platinum occurs mainly in the form of discrete platinum group mineral (PGM) grains (mainly bismuthotellurides, sulphides, and arsenides), whereas approximately 80 per cent of the Pd (and some Rh) is hosted in pentlandite. Within the oxidized MSZ ores, the PGE are polymodally distributed. Whereas the arsenide- and sulphide-PGMs that make up approximately 25 per cent of the original Pt content of the ore largely remain stable (relict PGMs), the remaining PGMs are disintegrated. The base metal sulphides are destroyed, partly releasing their base metal and PGE contents, and are replaced by iron oxides or hydroxides. Unspecified amounts of the PGE are redistributed and either form secondary PGMs, are found in chemically and mineralogically ill-defined (Pt/Pd)-oxides or hydroxides, or in iron-hydroxides, Mn-Co-hydroxides, and in secondary silicates. The problematic processing of oxidized MSZ ores is attributable to their complex nature and polymodal distribution of the PGE, prohibiting a significant upgrading of the ores by conventional metallurgical methods. Therefore, only bulk leaching methods are viable for ore treatment, and novel metallurgical methods have to be developed for the processing of these ores. Our ongoing work aims at locating the PGE in their mineralogical form in order to understand the mineralogical balance of the PGE in the ores and thereby facilitate the evaluation of metallurgical options for their recovery. A short overview on options and recent advances regarding the recovery of the PGE from oxidized ores is given.

Palabras clave : main sulphide zone; Great Dyke; Zimbabwe; oxidized ores; mineralogy.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons