SciELO - Scientific Electronic Library Online

 
vol.112 issue12 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

Abstract

MANCHISI, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. [online]. 2012, vol.112, n.12, pp.1051-1058. ISSN 2411-9717.

Laboratory investigations were conducted to establish the feasibility of bioleaching a mixed copper oxide/sulphide rougher concentrate from Nchanga Mine on the Zambian Copperbelt. The objective was to determine the kinetics and extent of copper extraction for this material. Batch experiments were conducted under different solution conditions in stirred tank bioreactors. The progress of (bio)leaching was monitored through measurements of soluble ferrous and ferric iron, copper, pH, and redox potentials, while bacterial activity was monitored online through O2 and CO2 gas utilization rates. About 20 per cent copper was solubilized within 2 hours in all cases of non-oxidative (abiotic), oxidative (abiotic), and bioleaching experiments. This was attributed to the dissolution of mainly copper oxides. Subsequently, bioleaching experiments resulted in an overall copper extraction of 93 per cent, with up to 8 g.L-1 copper after six leaching days, compared to 58 per cent copper extraction in the abiotic oxidative acid leaching experiments. However, there was little effect of time (i.e. poor dissolution kinetics) on copper recovery for abiotic non-oxidative acid leaching of the material. Hence, the rate of sulphide leaching increased due to the activity of bacteria. Thus, the material is potentially bioleachable under mesophilic conditions. However, more exhaustive test work needs to be conducted to establish the effect of bioleaching variables and heat requirement.

Keywords : bioleaching; bioreactor; copper sulphide ore; recovery; kinetics..

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License