SciELO - Scientific Electronic Library Online

 
vol.112 issue2The effect of cation and organic addition on the settling and compaction behaviour of clay-rich slimes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

Abstract

WANG, F.; TU, S.  and  BAI, Q.. Practice and prospects of fully mechanized mining technology for thin coal seams in China. J. S. Afr. Inst. Min. Metall. [online]. 2012, vol.112, n.2, pp.161-170. ISSN 2411-9717.

In China, thin coal seams are rich in resources but are technically challenging. The mineable reserves in these seams account for 20.4% of the total coal resources, while the current production accounts for only 10.4% of the total annual production. Characteristics such as narrow mining space, low level of mechanization, poor working environment, and high cost of mining, restrict the development of mining safety and efficiency. Recently, fully mechanized mining technology has developed rapidly for thin coal seams, the level of yield and efficiency has reached or exceeded the international standard, and some state-owned key coal mines are considering automation of their mining process. In thin coal seams with hard stone bands that contain concentrations of pyrite, a specialized software, LS-DYNA, is used to calculate the rational blasting parameters that are used in the deep-hole pre-splitting blasting. Using this method the hard stone bands are fractured effectively, and hence increasing the coal productivity. In addition, mining advance rate were increased by enhancing the level of fully mechanized equipment and safety improved by increasing gas drainage from the gas outburst prone seam located some 7 m below the coal horizon. At present, thin coal seam mining technology faces many challenges, including the low level of equipment automation, the low advance rate in mixed coal-rock ground, and the large number of the mine personnel underground. By lowering the labour intensity and improving efficiency through automation and other measures, more efficient working faces can be implemented in thin coal seams.

Keywords : thin coal seam; fully mechanized mining; complex geological conditions; deep-hole pre-splitting blasting; manless working face.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License