SciELO - Scientific Electronic Library Online

 
vol.110 número1Mine seismicity: Prediction or forecasting? índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

VOGT, D.; BRINK, A. V-Z.  y  SCHUTTE, P.C.. New technology for real-time in-stope safety management. J. S. Afr. Inst. Min. Metall. [online]. 2010, vol.110, n.1, pp.21-27. ISSN 2411-9717.

South African underground hard rock mines are typically managed using measurements made daily, weekly or even monthly of key parameters such as face advance, readiness to blast, blast success, temperature or dust levels. Safety and health can be greatly improved if a real-time measurement system can inform decision making. To enable this vision of widespread sensing, communication and decision support, CSIR has developed an open standard architecture for communication of sensor data, and a reference implementation using that standard. The standard is called AziSA, which means 'to inform' in isiZulu. AziSA provides an architecture that allows for connection of any type of sensor and that is particularly suited to wireless sensing. On the safety side, the CSIR is developing a suite of sensors specifically around the risk of rockfalls. Sensors such as an electronic replacement for the barring tool, or a thermal sensor that can detect loose rock, can already be used to identify potential hazards in the hangingwall. When these sensors are combined with location and time information in a single database, it becomes possible to build maps of risk and to extrapolate risk into unmined areas. It is also easy to confirm that routine safety procedures like barring are actually taking place. In the future, it is proposed that entry inspections will be made using remote techniques that will not place an individual miner at risk. While miners will still be required to bar or place support, they will do so with a clear idea of which portions of the hangingwall are safe, and which present risk. On the health side, if a network such as AziSA is deployed in the stope, it becomes much easier to monitor the condition of individual miners. The work strain experienced by miners can be monitored through heart-rate sensors, and their core body temperature can be monitored using various novel techniques discussed in the paper. Additional sensors can be added to quantify worker exposure to hazards such as noise or dust. Individual sensors allow for people who are at an unacceptably high risk of developing heat disorders to be treated timeously, and they also allow for team management based on objective measures. Over a longer period, position sensing and environment monitors, or personal dosimetry, provide a powerful management tool to prevent workers from being overexposed to hazards, and to confirm that management instructions are being followed. Cost-effective sensing in the stope is a major challenge, but one that can be overcome through technology like that used in AziSA. Sensing provides opportunities both to make immediate interventions when workers are exposed to unacceptable risk, and to manage the long-term exposure of workers to hazard

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons