SciELO - Scientific Electronic Library Online

 
vol.31 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


African Entomology

On-line version ISSN 2224-8854
Print version ISSN 1021-3589

Abstract

JEANRENRAUD, Alexander CSN et al. The effect of pollution on the competitive dynamics of Anopheles arabiensis Patton, 1905 and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae). AE [online]. 2023, vol.31, pp.1-9. ISSN 2224-8854.  http://dx.doi.org/10.17159/2254-8854/2023/a10656.

Culex quinquefasciatus Say, 1823 and Anopheles arabiensis Patton, 1905 (Diptera: Culicidae) are often found breeding in the same water sources and engage in interspecific competition. Although Cx. quinquefasciatus is known to proliferate in a range of polluted environments, the ability of An. arabiensis to proliferate in polluted water has only been reported relatively recently. The effects of pollution and insecticide resistance on this competitive interaction are unknown. This study examined the effect of pollution on the dynamics of the interspecific competition. Three laboratory strains were used in this study: an insecticide susceptible and an insecticide resistant An. arabiensis, and an insecticide resistant Cx. quinquefasciatus. Larval pollutant tolerances of each strain were assessed and compared by determining the lethal concentration at 50% mortality (LC50). The larvae from each strain were exposed to either inorganic fertiliser or copper nitrate, following which eclosion success was assessed. The results showed that the insecticide resistant strains had higher emergence rates when reared in polluted conditions without competition, with the Cx. quinquefasciatus strain showing the highest rate of eclosion. This species also had a higher tolerance for metal pollution than the An. arabiensis strains. The effects of pollutants on oviposition choice were examined. Pollution altered adult oviposition choice. The effect of larval metal exposure had variable effects on the activity of metabolic detoxification enzymes. An insecticide resistant phenotype had greater tolerance to pollutants and possibly developmental advantages based on a variable detoxification response to the pollutant. Pollution can therefore alter interspecific competition dynamics between the malaria vector An. arabiensis and Cx. quinquefasciatus.

Keywords : copper nitrate; detoxification enzymes; inorganic fertiliser; maximum acceptable toxicity concentration; tolerance.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License