SciELO - Scientific Electronic Library Online

 
vol.34 número4The impact of the moratorium on the regulation governing vehicle height restriction: a South African high cube container caseAmore: CNN-based moving object detection and removal towards slam in dynamic environments índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Industrial Engineering

versão On-line ISSN 2224-7890
versão impressa ISSN 1012-277X

Resumo

MOLETSANE, M.; DU PREEZ, W.; DE BEER, D.  e  NKHWA, S.. Characterisation of bone-regenerating scaffolds produced through lithography-based ceramic manufacturing. S. Afr. J. Ind. Eng. [online]. 2023, vol.34, n.4, pp.47-58. ISSN 2224-7890.  http://dx.doi.org/10.7166/34-4-2984.

Lithography-based ceramic manufacturing (LCM) is an additive manufacturing (AM) technology that builds custom-designed, three-dimensional ceramic parts layer by layer. The level of precision of the process allows for the printing of custom-made interconnected lattices and designs suitable for bone implants. This study investigated the LCM printability of various lattice structures with the hydroxyapatite (HA480) supplied by Lithoz. Different lattice structures were characterised. The microscopic structure, the composition, and the surface roughness of the test specimens were determined. To obtain the mechanical properties of the structures, compression tests were performed. The observed micropores of ±3 µm and the macropores of ±320 µm were suitable for bone cell growth. The measured microhardness of HA480 was 556±25 HV in the built direction and 559±27 HV perpendicular to the built direction. The compressive strength of the rhombic dodecahedron lattice structure was 4±0.5 MPa, and was superior to other tested lattices. From the results it was concluded that lattice structures produced through LCM have the potential to be used to produce customised bone-regenerating scaffolds.

        · resumo em Africaner     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons